This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004) (Revised by Mario Carneiro, 13-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | facnn | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | 1 | a1i | ⊢ ( 𝑁 ∈ ( ℕ0 ∖ { 0 } ) → 0 ∈ V ) |
| 3 | 1ex | ⊢ 1 ∈ V | |
| 4 | 3 | a1i | ⊢ ( 𝑁 ∈ ( ℕ0 ∖ { 0 } ) → 1 ∈ V ) |
| 5 | df-fac | ⊢ ! = ( { 〈 0 , 1 〉 } ∪ seq 1 ( · , I ) ) | |
| 6 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 7 | dfn2 | ⊢ ℕ = ( ℕ0 ∖ { 0 } ) | |
| 8 | 6 7 | eqtr3i | ⊢ ( ℤ≥ ‘ 1 ) = ( ℕ0 ∖ { 0 } ) |
| 9 | 8 | reseq2i | ⊢ ( seq 1 ( · , I ) ↾ ( ℤ≥ ‘ 1 ) ) = ( seq 1 ( · , I ) ↾ ( ℕ0 ∖ { 0 } ) ) |
| 10 | 1z | ⊢ 1 ∈ ℤ | |
| 11 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( · , I ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 12 | fnresdm | ⊢ ( seq 1 ( · , I ) Fn ( ℤ≥ ‘ 1 ) → ( seq 1 ( · , I ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( · , I ) ) | |
| 13 | 10 11 12 | mp2b | ⊢ ( seq 1 ( · , I ) ↾ ( ℤ≥ ‘ 1 ) ) = seq 1 ( · , I ) |
| 14 | 9 13 | eqtr3i | ⊢ ( seq 1 ( · , I ) ↾ ( ℕ0 ∖ { 0 } ) ) = seq 1 ( · , I ) |
| 15 | 14 | uneq2i | ⊢ ( { 〈 0 , 1 〉 } ∪ ( seq 1 ( · , I ) ↾ ( ℕ0 ∖ { 0 } ) ) ) = ( { 〈 0 , 1 〉 } ∪ seq 1 ( · , I ) ) |
| 16 | 5 15 | eqtr4i | ⊢ ! = ( { 〈 0 , 1 〉 } ∪ ( seq 1 ( · , I ) ↾ ( ℕ0 ∖ { 0 } ) ) ) |
| 17 | id | ⊢ ( 𝑁 ∈ ( ℕ0 ∖ { 0 } ) → 𝑁 ∈ ( ℕ0 ∖ { 0 } ) ) | |
| 18 | 2 4 16 17 | fvsnun2 | ⊢ ( 𝑁 ∈ ( ℕ0 ∖ { 0 } ) → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) |
| 19 | 18 7 | eleq2s | ⊢ ( 𝑁 ∈ ℕ → ( ! ‘ 𝑁 ) = ( seq 1 ( · , I ) ‘ 𝑁 ) ) |