This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two linear operators is linear. (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnocoi.l | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| lnocoi.m | ⊢ 𝑀 = ( 𝑊 LnOp 𝑋 ) | ||
| lnocoi.n | ⊢ 𝑁 = ( 𝑈 LnOp 𝑋 ) | ||
| lnocoi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| lnocoi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| lnocoi.x | ⊢ 𝑋 ∈ NrmCVec | ||
| lnocoi.s | ⊢ 𝑆 ∈ 𝐿 | ||
| lnocoi.t | ⊢ 𝑇 ∈ 𝑀 | ||
| Assertion | lnocoi | ⊢ ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnocoi.l | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 2 | lnocoi.m | ⊢ 𝑀 = ( 𝑊 LnOp 𝑋 ) | |
| 3 | lnocoi.n | ⊢ 𝑁 = ( 𝑈 LnOp 𝑋 ) | |
| 4 | lnocoi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 5 | lnocoi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 6 | lnocoi.x | ⊢ 𝑋 ∈ NrmCVec | |
| 7 | lnocoi.s | ⊢ 𝑆 ∈ 𝐿 | |
| 8 | lnocoi.t | ⊢ 𝑇 ∈ 𝑀 | |
| 9 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 10 | eqid | ⊢ ( BaseSet ‘ 𝑋 ) = ( BaseSet ‘ 𝑋 ) | |
| 11 | 9 10 2 | lnof | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀 ) → 𝑇 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑋 ) ) |
| 12 | 5 6 8 11 | mp3an | ⊢ 𝑇 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑋 ) |
| 13 | eqid | ⊢ ( BaseSet ‘ 𝑈 ) = ( BaseSet ‘ 𝑈 ) | |
| 14 | 13 9 1 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿 ) → 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 15 | 4 5 7 14 | mp3an | ⊢ 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) |
| 16 | fco | ⊢ ( ( 𝑇 : ( BaseSet ‘ 𝑊 ) ⟶ ( BaseSet ‘ 𝑋 ) ∧ 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ) → ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) ) | |
| 17 | 12 15 16 | mp2an | ⊢ ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) |
| 18 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 19 | 13 18 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 20 | 4 19 | mp3an1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 21 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 22 | 13 21 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 23 | 4 22 | mp3an1 | ⊢ ( ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 24 | 20 23 | stoic3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) |
| 25 | fvco3 | ⊢ ( ( 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) ) | |
| 26 | 15 24 25 | sylancr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) ) |
| 27 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 28 | 15 | ffvelcdmi | ⊢ ( 𝑦 ∈ ( BaseSet ‘ 𝑈 ) → ( 𝑆 ‘ 𝑦 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 29 | 15 | ffvelcdmi | ⊢ ( 𝑧 ∈ ( BaseSet ‘ 𝑈 ) → ( 𝑆 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 30 | 5 6 8 | 3pm3.2i | ⊢ ( 𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀 ) |
| 31 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 32 | eqid | ⊢ ( +𝑣 ‘ 𝑋 ) = ( +𝑣 ‘ 𝑋 ) | |
| 33 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 34 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑋 ) = ( ·𝑠OLD ‘ 𝑋 ) | |
| 35 | 9 10 31 32 33 34 2 | lnolin | ⊢ ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ∧ 𝑇 ∈ 𝑀 ) ∧ ( 𝑥 ∈ ℂ ∧ ( 𝑆 ‘ 𝑦 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑆 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) ) → ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 36 | 30 35 | mpan | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑆 ‘ 𝑦 ) ∈ ( BaseSet ‘ 𝑊 ) ∧ ( 𝑆 ‘ 𝑧 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 37 | 27 28 29 36 | syl3an | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 38 | 4 5 7 | 3pm3.2i | ⊢ ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿 ) |
| 39 | 13 9 21 31 18 33 1 | lnolin | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑆 ∈ 𝐿 ) ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) ) → ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) |
| 40 | 38 39 | mpan | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) = ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑆 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 42 | simp2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) | |
| 43 | fvco3 | ⊢ ( ( 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | |
| 44 | 15 42 43 | sylancr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 45 | 44 | oveq2d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 46 | simp3 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) | |
| 47 | fvco3 | ⊢ ( ( 𝑆 : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) | |
| 48 | 15 46 47 | sylancr | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) = ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) |
| 49 | 45 48 | oveq12d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ( +𝑣 ‘ 𝑋 ) ( 𝑇 ‘ ( 𝑆 ‘ 𝑧 ) ) ) ) |
| 50 | 37 41 49 | 3eqtr4rd | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) = ( 𝑇 ‘ ( 𝑆 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) ) ) |
| 51 | 26 50 | eqtr4d | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∧ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ) → ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) ) |
| 52 | 51 | rgen3 | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) |
| 53 | 13 10 21 32 18 34 3 | islno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑋 ∈ NrmCVec ) → ( ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 ↔ ( ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) ) ) ) |
| 54 | 4 6 53 | mp2an | ⊢ ( ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 ↔ ( ( 𝑇 ∘ 𝑆 ) : ( BaseSet ‘ 𝑈 ) ⟶ ( BaseSet ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ( BaseSet ‘ 𝑈 ) ∀ 𝑧 ∈ ( BaseSet ‘ 𝑈 ) ( ( 𝑇 ∘ 𝑆 ) ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑋 ) ( ( 𝑇 ∘ 𝑆 ) ‘ 𝑧 ) ) ) ) |
| 55 | 17 52 54 | mpbir2an | ⊢ ( 𝑇 ∘ 𝑆 ) ∈ 𝑁 |