This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Basic linearity property of a linear operator. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnoval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnoval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| lnoval.3 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| lnoval.4 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | ||
| lnoval.5 | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | ||
| lnoval.6 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | ||
| lnoval.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | lnolin | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoval.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnoval.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | lnoval.3 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 4 | lnoval.4 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | |
| 5 | lnoval.5 | ⊢ 𝑅 = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | lnoval.6 | ⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑊 ) | |
| 7 | lnoval.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 8 | 1 2 3 4 5 6 7 | islno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) ) |
| 9 | 8 | biimp3a | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) |
| 10 | 9 | simprd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) |
| 11 | oveq1 | ⊢ ( 𝑢 = 𝐴 → ( 𝑢 𝑅 𝑤 ) = ( 𝐴 𝑅 𝑤 ) ) | |
| 12 | 11 | fvoveq1d | ⊢ ( 𝑢 = 𝐴 → ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) ) |
| 13 | oveq1 | ⊢ ( 𝑢 = 𝐴 → ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) = ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) ) | |
| 14 | 13 | oveq1d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑢 = 𝐴 → ( ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) |
| 16 | oveq2 | ⊢ ( 𝑤 = 𝐵 → ( 𝐴 𝑅 𝑤 ) = ( 𝐴 𝑅 𝐵 ) ) | |
| 17 | 16 | fvoveq1d | ⊢ ( 𝑤 = 𝐵 → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) ) |
| 18 | fveq2 | ⊢ ( 𝑤 = 𝐵 → ( 𝑇 ‘ 𝑤 ) = ( 𝑇 ‘ 𝐵 ) ) | |
| 19 | 18 | oveq2d | ⊢ ( 𝑤 = 𝐵 → ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) = ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) |
| 21 | 17 20 | eqeq12d | ⊢ ( 𝑤 = 𝐵 → ( ( 𝑇 ‘ ( ( 𝐴 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ) ) |
| 22 | oveq2 | ⊢ ( 𝑡 = 𝐶 → ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) = ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) | |
| 23 | 22 | fveq2d | ⊢ ( 𝑡 = 𝐶 → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) = ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑡 = 𝐶 → ( 𝑇 ‘ 𝑡 ) = ( 𝑇 ‘ 𝐶 ) ) | |
| 25 | 24 | oveq2d | ⊢ ( 𝑡 = 𝐶 → ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( 𝑡 = 𝐶 → ( ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝑡 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) ↔ ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 27 | 15 21 26 | rspc3v | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ∀ 𝑢 ∈ ℂ ∀ 𝑤 ∈ 𝑋 ∀ 𝑡 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑢 𝑅 𝑤 ) 𝐺 𝑡 ) ) = ( ( 𝑢 𝑆 ( 𝑇 ‘ 𝑤 ) ) 𝐻 ( 𝑇 ‘ 𝑡 ) ) → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) ) |
| 28 | 10 27 | mpan9 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 𝐴 𝑅 𝐵 ) 𝐺 𝐶 ) ) = ( ( 𝐴 𝑆 ( 𝑇 ‘ 𝐵 ) ) 𝐻 ( 𝑇 ‘ 𝐶 ) ) ) |