This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition property of a linear operator. (Contributed by NM, 7-Dec-2007) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnoadd.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnoadd.5 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | ||
| lnoadd.6 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | ||
| lnoadd.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | lnoadd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) 𝐻 ( 𝑇 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnoadd.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnoadd.5 | ⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) | |
| 3 | lnoadd.6 | ⊢ 𝐻 = ( +𝑣 ‘ 𝑊 ) | |
| 4 | lnoadd.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 9 | 1 6 2 3 7 8 4 | lnolin | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) 𝐺 𝐵 ) ) = ( ( 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) 𝐻 ( 𝑇 ‘ 𝐵 ) ) ) |
| 10 | 5 9 | mp3anr1 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) 𝐺 𝐵 ) ) = ( ( 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) 𝐻 ( 𝑇 ‘ 𝐵 ) ) ) |
| 11 | simp1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑈 ∈ NrmCVec ) | |
| 12 | simpl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 13 | 1 7 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = 𝐴 ) |
| 14 | 11 12 13 | syl2an | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = 𝐴 ) |
| 15 | 14 | fvoveq1d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) 𝐺 𝐵 ) ) = ( 𝑇 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
| 16 | simpl2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → 𝑊 ∈ NrmCVec ) | |
| 17 | 1 6 4 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 18 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) | |
| 19 | 17 12 18 | syl2an | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) |
| 20 | 6 8 | nvsid | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝐴 ) ∈ ( BaseSet ‘ 𝑊 ) ) → ( 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) = ( 𝑇 ‘ 𝐴 ) ) |
| 21 | 16 19 20 | syl2anc | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) = ( 𝑇 ‘ 𝐴 ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 1 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝐴 ) ) 𝐻 ( 𝑇 ‘ 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) 𝐻 ( 𝑇 ‘ 𝐵 ) ) ) |
| 23 | 10 15 22 | 3eqtr3d | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝑇 ‘ ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑇 ‘ 𝐴 ) 𝐻 ( 𝑇 ‘ 𝐵 ) ) ) |