This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubdistr2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
| 3 | hvmulcl | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 4 | 3 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) |
| 5 | hvsubval | ⊢ ( ( ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ∧ ( 𝐵 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) ) |
| 7 | mulm1 | ⊢ ( 𝐵 ∈ ℂ → ( - 1 · 𝐵 ) = - 𝐵 ) | |
| 8 | 7 | oveq1d | ⊢ ( 𝐵 ∈ ℂ → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 𝐵 ·ℎ 𝐶 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 𝐵 ·ℎ 𝐶 ) ) |
| 10 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 11 | ax-hvmulass | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) | |
| 12 | 10 11 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( - 1 · 𝐵 ) ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
| 13 | 9 12 | eqtr3d | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 𝐵 ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 𝐵 ·ℎ 𝐶 ) = ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |
| 15 | 14 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 1 ·ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) ) |
| 16 | negcl | ⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) | |
| 17 | ax-hvdistr2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) ) | |
| 18 | 16 17 | syl3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) ) |
| 19 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) | |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 + - 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) ) |
| 22 | 18 21 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐶 ) +ℎ ( - 𝐵 ·ℎ 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) ) |
| 23 | 6 15 22 | 3eqtr2rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 − 𝐵 ) ·ℎ 𝐶 ) = ( ( 𝐴 ·ℎ 𝐶 ) −ℎ ( 𝐵 ·ℎ 𝐶 ) ) ) |