This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmnn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| lmnn.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| lmnn.4 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | ||
| lmnn.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | ||
| lmnn.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) | ||
| Assertion | lmnn | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmnn.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | lmnn.3 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 3 | lmnn.4 | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) | |
| 4 | lmnn.5 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | |
| 5 | lmnn.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) | |
| 6 | rpreccl | ⊢ ( 𝑥 ∈ ℝ+ → ( 1 / 𝑥 ) ∈ ℝ+ ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 8 | 7 | rpred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 9 | 7 | rpge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ ( 1 / 𝑥 ) ) |
| 10 | flge0nn0 | ⊢ ( ( ( 1 / 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝑥 ) ) → ( ⌊ ‘ ( 1 / 𝑥 ) ) ∈ ℕ0 ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ ( 1 / 𝑥 ) ) ∈ ℕ0 ) |
| 12 | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ) |
| 14 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 15 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝐹 : ℕ ⟶ 𝑋 ) |
| 16 | eluznn | ⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) | |
| 17 | 13 16 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 18 | 15 17 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 19 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑃 ∈ 𝑋 ) |
| 20 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑃 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) ∈ ℝ* ) | |
| 21 | 14 18 19 20 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) ∈ ℝ* ) |
| 22 | 17 | nnrecred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ ) |
| 23 | 22 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) ∈ ℝ* ) |
| 24 | rpxr | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) | |
| 25 | 24 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑥 ∈ ℝ* ) |
| 26 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) |
| 27 | 17 26 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < ( 1 / 𝑘 ) ) |
| 28 | 8 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑥 ) ∈ ℝ ) |
| 29 | 13 | nnred | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℝ ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℝ ) |
| 31 | 17 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑘 ∈ ℝ ) |
| 32 | flltp1 | ⊢ ( ( 1 / 𝑥 ) ∈ ℝ → ( 1 / 𝑥 ) < ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) | |
| 33 | 28 32 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑥 ) < ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) |
| 34 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ≤ 𝑘 ) | |
| 35 | 34 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ≤ 𝑘 ) |
| 36 | 28 30 31 33 35 | ltletrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑥 ) < 𝑘 ) |
| 37 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → 𝑥 ∈ ℝ+ ) | |
| 38 | rpregt0 | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) | |
| 39 | nnrp | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) | |
| 40 | 39 | rpregt0d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 41 | ltrec1 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → ( ( 1 / 𝑥 ) < 𝑘 ↔ ( 1 / 𝑘 ) < 𝑥 ) ) | |
| 42 | 38 40 41 | syl2an | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 𝑥 ) < 𝑘 ↔ ( 1 / 𝑘 ) < 𝑥 ) ) |
| 43 | 37 17 42 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 1 / 𝑥 ) < 𝑘 ↔ ( 1 / 𝑘 ) < 𝑥 ) ) |
| 44 | 36 43 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( 1 / 𝑘 ) < 𝑥 ) |
| 45 | 21 23 25 27 44 | xrlttrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 46 | 45 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 47 | fveq2 | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) → ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ) | |
| 48 | 47 | raleqdv | ⊢ ( 𝑗 = ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) |
| 49 | 48 | rspcev | ⊢ ( ( ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ ( ( ⌊ ‘ ( 1 / 𝑥 ) ) + 1 ) ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 50 | 13 46 49 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 51 | 50 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) |
| 52 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 53 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 54 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 55 | 1 2 52 53 54 4 | lmmbrf | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑃 ) < 𝑥 ) ) ) |
| 56 | 3 51 55 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |