This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the norm of each member of a converging sequence is less than or equal to a given amount, so is the norm of the convergence value. (Contributed by NM, 25-Dec-2007) (Revised by AV, 16-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nglmle.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nglmle.2 | ⊢ 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) | ||
| nglmle.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| nglmle.5 | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nglmle.6 | ⊢ ( 𝜑 → 𝐺 ∈ NrmGrp ) | ||
| nglmle.7 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | ||
| nglmle.8 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | ||
| nglmle.9 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | ||
| nglmle.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) | ||
| Assertion | nglmle | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) ≤ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nglmle.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nglmle.2 | ⊢ 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( 𝑋 × 𝑋 ) ) | |
| 3 | nglmle.3 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 4 | nglmle.5 | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 5 | nglmle.6 | ⊢ ( 𝜑 → 𝐺 ∈ NrmGrp ) | |
| 6 | nglmle.7 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | |
| 7 | nglmle.8 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | |
| 8 | nglmle.9 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) | |
| 9 | nglmle.10 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) | |
| 10 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 12 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 13 | 5 12 | syl | ⊢ ( 𝜑 → 𝐺 ∈ MetSp ) |
| 14 | msxms | ⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → 𝐺 ∈ ∞MetSp ) |
| 16 | 1 2 | xmsxmet | ⊢ ( 𝐺 ∈ ∞MetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | 3 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 20 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ 𝑋 ) | |
| 21 | 19 7 20 | syl2anc | ⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 22 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 23 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 24 | 4 1 22 23 2 | nmval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑃 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑃 ) = ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 25 | 11 21 24 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) = ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 26 | 1 22 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 27 | 11 26 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 28 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) | |
| 29 | 17 21 27 28 | syl3anc | ⊢ ( 𝜑 → ( 𝑃 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) |
| 30 | 25 29 | eqtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) = ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ) |
| 31 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 32 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 33 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐺 ∈ Grp ) |
| 34 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
| 35 | 4 1 22 23 2 | nmval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) |
| 37 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 38 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 0g ‘ 𝐺 ) ∈ 𝑋 ) |
| 39 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 0g ‘ 𝐺 ) ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) | |
| 40 | 37 34 38 39 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 0g ‘ 𝐺 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
| 41 | 36 40 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑁 ‘ ( 𝐹 ‘ 𝑘 ) ) = ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ) |
| 42 | 41 9 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 0g ‘ 𝐺 ) 𝐷 ( 𝐹 ‘ 𝑘 ) ) ≤ 𝑅 ) |
| 43 | 31 3 17 32 7 27 8 42 | lmle | ⊢ ( 𝜑 → ( ( 0g ‘ 𝐺 ) 𝐷 𝑃 ) ≤ 𝑅 ) |
| 44 | 30 43 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑃 ) ≤ 𝑅 ) |