This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmco | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑀 LMHom 𝑂 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 2 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( ·𝑠 ‘ 𝑂 ) = ( ·𝑠 ‘ 𝑂 ) | |
| 4 | eqid | ⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑂 ) = ( Scalar ‘ 𝑂 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) | |
| 7 | lmhmlmod1 | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑀 ∈ LMod ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑀 ∈ LMod ) |
| 9 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) → 𝑂 ∈ LMod ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑂 ∈ LMod ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑁 ) | |
| 12 | 11 5 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) → ( Scalar ‘ 𝑂 ) = ( Scalar ‘ 𝑁 ) ) |
| 13 | 4 11 | lmhmsca | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑀 ) ) |
| 14 | 12 13 | sylan9eq | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( Scalar ‘ 𝑂 ) = ( Scalar ‘ 𝑀 ) ) |
| 15 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) → 𝐹 ∈ ( 𝑁 GrpHom 𝑂 ) ) | |
| 16 | lmghm | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 17 | ghmco | ⊢ ( ( 𝐹 ∈ ( 𝑁 GrpHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑀 GrpHom 𝑂 ) ) | |
| 18 | 15 16 17 | syl2an | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑀 GrpHom 𝑂 ) ) |
| 19 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) | |
| 20 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) | |
| 21 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) | |
| 22 | eqid | ⊢ ( ·𝑠 ‘ 𝑁 ) = ( ·𝑠 ‘ 𝑁 ) | |
| 23 | 4 6 1 2 22 | lmhmlin | ⊢ ( ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 24 | 19 20 21 23 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 25 | 24 | fveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 26 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ) | |
| 27 | 13 | fveq2d | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 28 | 27 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 29 | 20 28 | eleqtrrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑁 ) ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 31 | 1 30 | lmhmf | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 33 | 32 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 34 | 33 | adantrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 35 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑁 ) ) | |
| 36 | 11 35 30 22 3 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑁 ) ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑂 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 37 | 26 29 34 36 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑂 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 38 | 25 37 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑂 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 39 | 32 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐺 Fn ( Base ‘ 𝑀 ) ) |
| 40 | 7 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑀 ∈ LMod ) |
| 41 | 1 4 2 6 | lmodvscl | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 42 | 40 20 21 41 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 43 | fvco2 | ⊢ ( ( 𝐺 Fn ( Base ‘ 𝑀 ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) | |
| 44 | 39 42 43 | syl2an2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝐹 ‘ ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) |
| 45 | fvco2 | ⊢ ( ( 𝐺 Fn ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) | |
| 46 | 39 21 45 | syl2an2r | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) |
| 47 | 46 | oveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑂 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑂 ) ( 𝐹 ‘ ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 48 | 38 44 47 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑂 ) ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑦 ) ) ) |
| 49 | 1 2 3 4 5 6 8 10 14 18 48 | islmhmd | ⊢ ( ( 𝐹 ∈ ( 𝑁 LMHom 𝑂 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘ 𝐺 ) ∈ ( 𝑀 LMHom 𝑂 ) ) |