This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lmhmco | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> ( F o. G ) e. ( M LMHom O ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 2 | eqid | |- ( .s ` M ) = ( .s ` M ) |
|
| 3 | eqid | |- ( .s ` O ) = ( .s ` O ) |
|
| 4 | eqid | |- ( Scalar ` M ) = ( Scalar ` M ) |
|
| 5 | eqid | |- ( Scalar ` O ) = ( Scalar ` O ) |
|
| 6 | eqid | |- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
|
| 7 | lmhmlmod1 | |- ( G e. ( M LMHom N ) -> M e. LMod ) |
|
| 8 | 7 | adantl | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> M e. LMod ) |
| 9 | lmhmlmod2 | |- ( F e. ( N LMHom O ) -> O e. LMod ) |
|
| 10 | 9 | adantr | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> O e. LMod ) |
| 11 | eqid | |- ( Scalar ` N ) = ( Scalar ` N ) |
|
| 12 | 11 5 | lmhmsca | |- ( F e. ( N LMHom O ) -> ( Scalar ` O ) = ( Scalar ` N ) ) |
| 13 | 4 11 | lmhmsca | |- ( G e. ( M LMHom N ) -> ( Scalar ` N ) = ( Scalar ` M ) ) |
| 14 | 12 13 | sylan9eq | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> ( Scalar ` O ) = ( Scalar ` M ) ) |
| 15 | lmghm | |- ( F e. ( N LMHom O ) -> F e. ( N GrpHom O ) ) |
|
| 16 | lmghm | |- ( G e. ( M LMHom N ) -> G e. ( M GrpHom N ) ) |
|
| 17 | ghmco | |- ( ( F e. ( N GrpHom O ) /\ G e. ( M GrpHom N ) ) -> ( F o. G ) e. ( M GrpHom O ) ) |
|
| 18 | 15 16 17 | syl2an | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> ( F o. G ) e. ( M GrpHom O ) ) |
| 19 | simplr | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G e. ( M LMHom N ) ) |
|
| 20 | simprl | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` ( Scalar ` M ) ) ) |
|
| 21 | simprr | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> y e. ( Base ` M ) ) |
|
| 22 | eqid | |- ( .s ` N ) = ( .s ` N ) |
|
| 23 | 4 6 1 2 22 | lmhmlin | |- ( ( G e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( G ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( G ` y ) ) ) |
| 24 | 19 20 21 23 | syl3anc | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( G ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( G ` y ) ) ) |
| 25 | 24 | fveq2d | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( G ` ( x ( .s ` M ) y ) ) ) = ( F ` ( x ( .s ` N ) ( G ` y ) ) ) ) |
| 26 | simpll | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F e. ( N LMHom O ) ) |
|
| 27 | 13 | fveq2d | |- ( G e. ( M LMHom N ) -> ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` M ) ) ) |
| 28 | 27 | ad2antlr | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` M ) ) ) |
| 29 | 20 28 | eleqtrrd | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` ( Scalar ` N ) ) ) |
| 30 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 31 | 1 30 | lmhmf | |- ( G e. ( M LMHom N ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
| 32 | 31 | adantl | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
| 33 | 32 | ffvelcdmda | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ y e. ( Base ` M ) ) -> ( G ` y ) e. ( Base ` N ) ) |
| 34 | 33 | adantrl | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( G ` y ) e. ( Base ` N ) ) |
| 35 | eqid | |- ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` N ) ) |
|
| 36 | 11 35 30 22 3 | lmhmlin | |- ( ( F e. ( N LMHom O ) /\ x e. ( Base ` ( Scalar ` N ) ) /\ ( G ` y ) e. ( Base ` N ) ) -> ( F ` ( x ( .s ` N ) ( G ` y ) ) ) = ( x ( .s ` O ) ( F ` ( G ` y ) ) ) ) |
| 37 | 26 29 34 36 | syl3anc | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( x ( .s ` N ) ( G ` y ) ) ) = ( x ( .s ` O ) ( F ` ( G ` y ) ) ) ) |
| 38 | 25 37 | eqtrd | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( G ` ( x ( .s ` M ) y ) ) ) = ( x ( .s ` O ) ( F ` ( G ` y ) ) ) ) |
| 39 | 32 | ffnd | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> G Fn ( Base ` M ) ) |
| 40 | 7 | ad2antlr | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> M e. LMod ) |
| 41 | 1 4 2 6 | lmodvscl | |- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( x ( .s ` M ) y ) e. ( Base ` M ) ) |
| 42 | 40 20 21 41 | syl3anc | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` M ) y ) e. ( Base ` M ) ) |
| 43 | fvco2 | |- ( ( G Fn ( Base ` M ) /\ ( x ( .s ` M ) y ) e. ( Base ` M ) ) -> ( ( F o. G ) ` ( x ( .s ` M ) y ) ) = ( F ` ( G ` ( x ( .s ` M ) y ) ) ) ) |
|
| 44 | 39 42 43 | syl2an2r | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F o. G ) ` ( x ( .s ` M ) y ) ) = ( F ` ( G ` ( x ( .s ` M ) y ) ) ) ) |
| 45 | fvco2 | |- ( ( G Fn ( Base ` M ) /\ y e. ( Base ` M ) ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
|
| 46 | 39 21 45 | syl2an2r | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F o. G ) ` y ) = ( F ` ( G ` y ) ) ) |
| 47 | 46 | oveq2d | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` O ) ( ( F o. G ) ` y ) ) = ( x ( .s ` O ) ( F ` ( G ` y ) ) ) ) |
| 48 | 38 44 47 | 3eqtr4d | |- ( ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F o. G ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` O ) ( ( F o. G ) ` y ) ) ) |
| 49 | 1 2 3 4 5 6 8 10 14 18 48 | islmhmd | |- ( ( F e. ( N LMHom O ) /\ G e. ( M LMHom N ) ) -> ( F o. G ) e. ( M LMHom O ) ) |