This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | llnmod1i2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) = ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | simpl1 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) | |
| 7 | simpl2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) | |
| 8 | simprl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) | |
| 9 | simprr | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) | |
| 10 | eqid | ⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) | |
| 11 | eqid | ⊢ ( +𝑃 ‘ 𝐾 ) = ( +𝑃 ‘ 𝐾 ) | |
| 12 | 1 3 5 10 11 | pmapjlln1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 13 | 6 7 8 9 12 | syl13anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 14 | 6 | hllatd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
| 15 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 16 | 8 15 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
| 17 | 1 5 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 18 | 9 17 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
| 19 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 | 14 16 18 19 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 21 | simpl3 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑌 ∈ 𝐵 ) | |
| 22 | 1 2 3 4 10 11 | hlmod1i | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) ) |
| 23 | 6 7 20 21 22 | syl13anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) ) |
| 24 | 13 23 | mpan2d | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ≤ 𝑌 → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) ) |
| 25 | 24 | 3impia | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) |
| 26 | 25 | eqcomd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) = ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) ) |