This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | |- B = ( Base ` K ) |
|
| atmod.l | |- .<_ = ( le ` K ) |
||
| atmod.j | |- .\/ = ( join ` K ) |
||
| atmod.m | |- ./\ = ( meet ` K ) |
||
| atmod.a | |- A = ( Atoms ` K ) |
||
| Assertion | llnmod1i2 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ X .<_ Y ) -> ( X .\/ ( ( P .\/ Q ) ./\ Y ) ) = ( ( X .\/ ( P .\/ Q ) ) ./\ Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | |- B = ( Base ` K ) |
|
| 2 | atmod.l | |- .<_ = ( le ` K ) |
|
| 3 | atmod.j | |- .\/ = ( join ` K ) |
|
| 4 | atmod.m | |- ./\ = ( meet ` K ) |
|
| 5 | atmod.a | |- A = ( Atoms ` K ) |
|
| 6 | simpl1 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> K e. HL ) |
|
| 7 | simpl2 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> X e. B ) |
|
| 8 | simprl | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> P e. A ) |
|
| 9 | simprr | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> Q e. A ) |
|
| 10 | eqid | |- ( pmap ` K ) = ( pmap ` K ) |
|
| 11 | eqid | |- ( +P ` K ) = ( +P ` K ) |
|
| 12 | 1 3 5 10 11 | pmapjlln1 | |- ( ( K e. HL /\ ( X e. B /\ P e. A /\ Q e. A ) ) -> ( ( pmap ` K ) ` ( X .\/ ( P .\/ Q ) ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` ( P .\/ Q ) ) ) ) |
| 13 | 6 7 8 9 12 | syl13anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> ( ( pmap ` K ) ` ( X .\/ ( P .\/ Q ) ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` ( P .\/ Q ) ) ) ) |
| 14 | 6 | hllatd | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> K e. Lat ) |
| 15 | 1 5 | atbase | |- ( P e. A -> P e. B ) |
| 16 | 8 15 | syl | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> P e. B ) |
| 17 | 1 5 | atbase | |- ( Q e. A -> Q e. B ) |
| 18 | 9 17 | syl | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> Q e. B ) |
| 19 | 1 3 | latjcl | |- ( ( K e. Lat /\ P e. B /\ Q e. B ) -> ( P .\/ Q ) e. B ) |
| 20 | 14 16 18 19 | syl3anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> ( P .\/ Q ) e. B ) |
| 21 | simpl3 | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> Y e. B ) |
|
| 22 | 1 2 3 4 10 11 | hlmod1i | |- ( ( K e. HL /\ ( X e. B /\ ( P .\/ Q ) e. B /\ Y e. B ) ) -> ( ( X .<_ Y /\ ( ( pmap ` K ) ` ( X .\/ ( P .\/ Q ) ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` ( P .\/ Q ) ) ) ) -> ( ( X .\/ ( P .\/ Q ) ) ./\ Y ) = ( X .\/ ( ( P .\/ Q ) ./\ Y ) ) ) ) |
| 23 | 6 7 20 21 22 | syl13anc | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> ( ( X .<_ Y /\ ( ( pmap ` K ) ` ( X .\/ ( P .\/ Q ) ) ) = ( ( ( pmap ` K ) ` X ) ( +P ` K ) ( ( pmap ` K ) ` ( P .\/ Q ) ) ) ) -> ( ( X .\/ ( P .\/ Q ) ) ./\ Y ) = ( X .\/ ( ( P .\/ Q ) ./\ Y ) ) ) ) |
| 24 | 13 23 | mpan2d | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) ) -> ( X .<_ Y -> ( ( X .\/ ( P .\/ Q ) ) ./\ Y ) = ( X .\/ ( ( P .\/ Q ) ./\ Y ) ) ) ) |
| 25 | 24 | 3impia | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ X .<_ Y ) -> ( ( X .\/ ( P .\/ Q ) ) ./\ Y ) = ( X .\/ ( ( P .\/ Q ) ./\ Y ) ) ) |
| 26 | 25 | eqcomd | |- ( ( ( K e. HL /\ X e. B /\ Y e. B ) /\ ( P e. A /\ Q e. A ) /\ X .<_ Y ) -> ( X .\/ ( ( P .\/ Q ) ./\ Y ) ) = ( ( X .\/ ( P .\/ Q ) ) ./\ Y ) ) |