This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of modular law pmod2iN that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012) (Revised by Mario Carneiro, 10-May-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atmod2i1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑃 ) = ( 𝑋 ∧ ( 𝑌 ∨ 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atmod.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | atmod.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | atmod.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | atmod.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | atmod.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 6 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
| 8 | simp22 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | simp23 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑌 ∈ 𝐵 ) | |
| 10 | 1 4 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 11 | 7 8 9 10 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑋 ∧ 𝑌 ) = ( 𝑌 ∧ 𝑋 ) ) |
| 12 | 11 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑌 ) ) = ( 𝑃 ∨ ( 𝑌 ∧ 𝑋 ) ) ) |
| 13 | simp21 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) | |
| 14 | 1 5 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ∈ 𝐵 ) |
| 16 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 17 | 7 8 9 16 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 18 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑃 ) ) |
| 19 | 7 15 17 18 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑋 ∧ 𝑌 ) ) = ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑃 ) ) |
| 20 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑌 ) ∈ 𝐵 ) |
| 21 | 7 15 9 20 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑌 ) ∈ 𝐵 ) |
| 22 | 1 4 | latmcom | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑌 ) ∧ 𝑋 ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑌 ) ) ) |
| 23 | 7 21 8 22 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑌 ) ∧ 𝑋 ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑌 ) ) ) |
| 24 | simp1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝐾 ∈ HL ) | |
| 25 | simp3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → 𝑃 ≤ 𝑋 ) | |
| 26 | 1 2 3 4 5 | atmod1i1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑌 ∧ 𝑋 ) ) = ( ( 𝑃 ∨ 𝑌 ) ∧ 𝑋 ) ) |
| 27 | 24 13 9 8 25 26 | syl131anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑌 ∧ 𝑋 ) ) = ( ( 𝑃 ∨ 𝑌 ) ∧ 𝑋 ) ) |
| 28 | 1 3 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑌 ) ) |
| 29 | 7 9 15 28 | syl3anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑌 ∨ 𝑃 ) = ( 𝑃 ∨ 𝑌 ) ) |
| 30 | 29 | oveq2d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑌 ∨ 𝑃 ) ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑌 ) ) ) |
| 31 | 23 27 30 | 3eqtr4d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( 𝑃 ∨ ( 𝑌 ∧ 𝑋 ) ) = ( 𝑋 ∧ ( 𝑌 ∨ 𝑃 ) ) ) |
| 32 | 12 19 31 | 3eqtr3d | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑃 ≤ 𝑋 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ 𝑃 ) = ( 𝑋 ∧ ( 𝑌 ∨ 𝑃 ) ) ) |