This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsssuc | ⊢ ( Lim 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid | ⊢ 𝐵 ⊆ suc 𝐵 | |
| 2 | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ suc 𝐵 → 𝐴 ⊆ suc 𝐵 ) ) | |
| 3 | 1 2 | mpi | ⊢ ( 𝐴 ⊆ 𝐵 → 𝐴 ⊆ suc 𝐵 ) |
| 4 | eleq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴 ) ) | |
| 5 | 4 | biimpcd | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝑥 = 𝐵 → 𝐵 ∈ 𝐴 ) ) |
| 6 | limsuc | ⊢ ( Lim 𝐴 → ( 𝐵 ∈ 𝐴 ↔ suc 𝐵 ∈ 𝐴 ) ) | |
| 7 | 6 | biimpa | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ∈ 𝐴 ) → suc 𝐵 ∈ 𝐴 ) |
| 8 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 9 | ordelord | ⊢ ( ( Ord 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) | |
| 10 | 8 9 | sylan | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord 𝐵 ) |
| 11 | ordsuc | ⊢ ( Ord 𝐵 ↔ Ord suc 𝐵 ) | |
| 12 | 10 11 | sylib | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ∈ 𝐴 ) → Ord suc 𝐵 ) |
| 13 | ordtri1 | ⊢ ( ( Ord 𝐴 ∧ Ord suc 𝐵 ) → ( 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ 𝐴 ) ) | |
| 14 | 8 12 13 | syl2an2r | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐴 ⊆ suc 𝐵 ↔ ¬ suc 𝐵 ∈ 𝐴 ) ) |
| 15 | 14 | con2bid | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( suc 𝐵 ∈ 𝐴 ↔ ¬ 𝐴 ⊆ suc 𝐵 ) ) |
| 16 | 7 15 | mpbid | ⊢ ( ( Lim 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ¬ 𝐴 ⊆ suc 𝐵 ) |
| 17 | 16 | ex | ⊢ ( Lim 𝐴 → ( 𝐵 ∈ 𝐴 → ¬ 𝐴 ⊆ suc 𝐵 ) ) |
| 18 | 5 17 | sylan9r | ⊢ ( ( Lim 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 = 𝐵 → ¬ 𝐴 ⊆ suc 𝐵 ) ) |
| 19 | 18 | con2d | ⊢ ( ( Lim 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵 ) ) |
| 20 | 19 | ex | ⊢ ( Lim 𝐴 → ( 𝑥 ∈ 𝐴 → ( 𝐴 ⊆ suc 𝐵 → ¬ 𝑥 = 𝐵 ) ) ) |
| 21 | 20 | com23 | ⊢ ( Lim 𝐴 → ( 𝐴 ⊆ suc 𝐵 → ( 𝑥 ∈ 𝐴 → ¬ 𝑥 = 𝐵 ) ) ) |
| 22 | 21 | imp31 | ⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ⊆ suc 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 = 𝐵 ) |
| 23 | ssel2 | ⊢ ( ( 𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ suc 𝐵 ) | |
| 24 | vex | ⊢ 𝑥 ∈ V | |
| 25 | 24 | elsuc | ⊢ ( 𝑥 ∈ suc 𝐵 ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐵 ) ) |
| 26 | 23 25 | sylib | ⊢ ( ( 𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ 𝐵 ∨ 𝑥 = 𝐵 ) ) |
| 27 | 26 | ord | ⊢ ( ( 𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 ∈ 𝐵 → 𝑥 = 𝐵 ) ) |
| 28 | 27 | con1d | ⊢ ( ( 𝐴 ⊆ suc 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 29 | 28 | adantll | ⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ⊆ suc 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → ( ¬ 𝑥 = 𝐵 → 𝑥 ∈ 𝐵 ) ) |
| 30 | 22 29 | mpd | ⊢ ( ( ( Lim 𝐴 ∧ 𝐴 ⊆ suc 𝐵 ) ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
| 31 | 30 | ex | ⊢ ( ( Lim 𝐴 ∧ 𝐴 ⊆ suc 𝐵 ) → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
| 32 | 31 | ssrdv | ⊢ ( ( Lim 𝐴 ∧ 𝐴 ⊆ suc 𝐵 ) → 𝐴 ⊆ 𝐵 ) |
| 33 | 32 | ex | ⊢ ( Lim 𝐴 → ( 𝐴 ⊆ suc 𝐵 → 𝐴 ⊆ 𝐵 ) ) |
| 34 | 3 33 | impbid2 | ⊢ ( Lim 𝐴 → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ suc 𝐵 ) ) |