This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class includes a limit ordinal iff the successor of the class includes it. (Contributed by NM, 30-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limsssuc | |- ( Lim A -> ( A C_ B <-> A C_ suc B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sssucid | |- B C_ suc B |
|
| 2 | sstr2 | |- ( A C_ B -> ( B C_ suc B -> A C_ suc B ) ) |
|
| 3 | 1 2 | mpi | |- ( A C_ B -> A C_ suc B ) |
| 4 | eleq1 | |- ( x = B -> ( x e. A <-> B e. A ) ) |
|
| 5 | 4 | biimpcd | |- ( x e. A -> ( x = B -> B e. A ) ) |
| 6 | limsuc | |- ( Lim A -> ( B e. A <-> suc B e. A ) ) |
|
| 7 | 6 | biimpa | |- ( ( Lim A /\ B e. A ) -> suc B e. A ) |
| 8 | limord | |- ( Lim A -> Ord A ) |
|
| 9 | ordelord | |- ( ( Ord A /\ B e. A ) -> Ord B ) |
|
| 10 | 8 9 | sylan | |- ( ( Lim A /\ B e. A ) -> Ord B ) |
| 11 | ordsuc | |- ( Ord B <-> Ord suc B ) |
|
| 12 | 10 11 | sylib | |- ( ( Lim A /\ B e. A ) -> Ord suc B ) |
| 13 | ordtri1 | |- ( ( Ord A /\ Ord suc B ) -> ( A C_ suc B <-> -. suc B e. A ) ) |
|
| 14 | 8 12 13 | syl2an2r | |- ( ( Lim A /\ B e. A ) -> ( A C_ suc B <-> -. suc B e. A ) ) |
| 15 | 14 | con2bid | |- ( ( Lim A /\ B e. A ) -> ( suc B e. A <-> -. A C_ suc B ) ) |
| 16 | 7 15 | mpbid | |- ( ( Lim A /\ B e. A ) -> -. A C_ suc B ) |
| 17 | 16 | ex | |- ( Lim A -> ( B e. A -> -. A C_ suc B ) ) |
| 18 | 5 17 | sylan9r | |- ( ( Lim A /\ x e. A ) -> ( x = B -> -. A C_ suc B ) ) |
| 19 | 18 | con2d | |- ( ( Lim A /\ x e. A ) -> ( A C_ suc B -> -. x = B ) ) |
| 20 | 19 | ex | |- ( Lim A -> ( x e. A -> ( A C_ suc B -> -. x = B ) ) ) |
| 21 | 20 | com23 | |- ( Lim A -> ( A C_ suc B -> ( x e. A -> -. x = B ) ) ) |
| 22 | 21 | imp31 | |- ( ( ( Lim A /\ A C_ suc B ) /\ x e. A ) -> -. x = B ) |
| 23 | ssel2 | |- ( ( A C_ suc B /\ x e. A ) -> x e. suc B ) |
|
| 24 | vex | |- x e. _V |
|
| 25 | 24 | elsuc | |- ( x e. suc B <-> ( x e. B \/ x = B ) ) |
| 26 | 23 25 | sylib | |- ( ( A C_ suc B /\ x e. A ) -> ( x e. B \/ x = B ) ) |
| 27 | 26 | ord | |- ( ( A C_ suc B /\ x e. A ) -> ( -. x e. B -> x = B ) ) |
| 28 | 27 | con1d | |- ( ( A C_ suc B /\ x e. A ) -> ( -. x = B -> x e. B ) ) |
| 29 | 28 | adantll | |- ( ( ( Lim A /\ A C_ suc B ) /\ x e. A ) -> ( -. x = B -> x e. B ) ) |
| 30 | 22 29 | mpd | |- ( ( ( Lim A /\ A C_ suc B ) /\ x e. A ) -> x e. B ) |
| 31 | 30 | ex | |- ( ( Lim A /\ A C_ suc B ) -> ( x e. A -> x e. B ) ) |
| 32 | 31 | ssrdv | |- ( ( Lim A /\ A C_ suc B ) -> A C_ B ) |
| 33 | 32 | ex | |- ( Lim A -> ( A C_ suc B -> A C_ B ) ) |
| 34 | 3 33 | impbid2 | |- ( Lim A -> ( A C_ B <-> A C_ suc B ) ) |