This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor operation behaves like a one-to-one function. Compare Exercise 16 of Enderton p. 194. (Contributed by NM, 3-Sep-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suc11 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 2 | ordn2lp | ⊢ ( Ord 𝐴 → ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) ) | |
| 3 | pm3.13 | ⊢ ( ¬ ( 𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴 ) → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) ) |
| 6 | eqimss | ⊢ ( suc 𝐴 = suc 𝐵 → suc 𝐴 ⊆ suc 𝐵 ) | |
| 7 | sucssel | ⊢ ( 𝐴 ∈ On → ( suc 𝐴 ⊆ suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) | |
| 8 | 6 7 | syl5 | ⊢ ( 𝐴 ∈ On → ( suc 𝐴 = suc 𝐵 → 𝐴 ∈ suc 𝐵 ) ) |
| 9 | elsuci | ⊢ ( 𝐴 ∈ suc 𝐵 → ( 𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵 ) ) | |
| 10 | 9 | ord | ⊢ ( 𝐴 ∈ suc 𝐵 → ( ¬ 𝐴 ∈ 𝐵 → 𝐴 = 𝐵 ) ) |
| 11 | 10 | com12 | ⊢ ( ¬ 𝐴 ∈ 𝐵 → ( 𝐴 ∈ suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 12 | 8 11 | syl9 | ⊢ ( 𝐴 ∈ On → ( ¬ 𝐴 ∈ 𝐵 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 13 | eqimss2 | ⊢ ( suc 𝐴 = suc 𝐵 → suc 𝐵 ⊆ suc 𝐴 ) | |
| 14 | sucssel | ⊢ ( 𝐵 ∈ On → ( suc 𝐵 ⊆ suc 𝐴 → 𝐵 ∈ suc 𝐴 ) ) | |
| 15 | 13 14 | syl5 | ⊢ ( 𝐵 ∈ On → ( suc 𝐴 = suc 𝐵 → 𝐵 ∈ suc 𝐴 ) ) |
| 16 | elsuci | ⊢ ( 𝐵 ∈ suc 𝐴 → ( 𝐵 ∈ 𝐴 ∨ 𝐵 = 𝐴 ) ) | |
| 17 | 16 | ord | ⊢ ( 𝐵 ∈ suc 𝐴 → ( ¬ 𝐵 ∈ 𝐴 → 𝐵 = 𝐴 ) ) |
| 18 | eqcom | ⊢ ( 𝐵 = 𝐴 ↔ 𝐴 = 𝐵 ) | |
| 19 | 17 18 | imbitrdi | ⊢ ( 𝐵 ∈ suc 𝐴 → ( ¬ 𝐵 ∈ 𝐴 → 𝐴 = 𝐵 ) ) |
| 20 | 19 | com12 | ⊢ ( ¬ 𝐵 ∈ 𝐴 → ( 𝐵 ∈ suc 𝐴 → 𝐴 = 𝐵 ) ) |
| 21 | 15 20 | syl9 | ⊢ ( 𝐵 ∈ On → ( ¬ 𝐵 ∈ 𝐴 → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 22 | 12 21 | jaao | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ( ¬ 𝐴 ∈ 𝐵 ∨ ¬ 𝐵 ∈ 𝐴 ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) ) |
| 23 | 5 22 | mpd | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc 𝐴 = suc 𝐵 → 𝐴 = 𝐵 ) ) |
| 24 | suceq | ⊢ ( 𝐴 = 𝐵 → suc 𝐴 = suc 𝐵 ) | |
| 25 | 23 24 | impbid1 | ⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵 ) ) |