This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If B is a limit point of the domain of the function F , then there is at most one limit value of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limcflf.f | |- ( ph -> F : A --> CC ) |
|
| limcflf.a | |- ( ph -> A C_ CC ) |
||
| limcflf.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
||
| limcflf.k | |- K = ( TopOpen ` CCfld ) |
||
| Assertion | limcmo | |- ( ph -> E* x x e. ( F limCC B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limcflf.f | |- ( ph -> F : A --> CC ) |
|
| 2 | limcflf.a | |- ( ph -> A C_ CC ) |
|
| 3 | limcflf.b | |- ( ph -> B e. ( ( limPt ` K ) ` A ) ) |
|
| 4 | limcflf.k | |- K = ( TopOpen ` CCfld ) |
|
| 5 | 4 | cnfldhaus | |- K e. Haus |
| 6 | eqid | |- ( A \ { B } ) = ( A \ { B } ) |
|
| 7 | eqid | |- ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) = ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) |
|
| 8 | 1 2 3 4 6 7 | limcflflem | |- ( ph -> ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) e. ( Fil ` ( A \ { B } ) ) ) |
| 9 | difss | |- ( A \ { B } ) C_ A |
|
| 10 | fssres | |- ( ( F : A --> CC /\ ( A \ { B } ) C_ A ) -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
|
| 11 | 1 9 10 | sylancl | |- ( ph -> ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) |
| 12 | 4 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 13 | 12 | toponunii | |- CC = U. K |
| 14 | 13 | hausflf | |- ( ( K e. Haus /\ ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) e. ( Fil ` ( A \ { B } ) ) /\ ( F |` ( A \ { B } ) ) : ( A \ { B } ) --> CC ) -> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) |
| 15 | 5 8 11 14 | mp3an2i | |- ( ph -> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) |
| 16 | 1 2 3 4 6 7 | limcflf | |- ( ph -> ( F limCC B ) = ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) |
| 17 | 16 | eleq2d | |- ( ph -> ( x e. ( F limCC B ) <-> x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) ) |
| 18 | 17 | mobidv | |- ( ph -> ( E* x x e. ( F limCC B ) <-> E* x x e. ( ( K fLimf ( ( ( nei ` K ) ` { B } ) |`t ( A \ { B } ) ) ) ` ( F |` ( A \ { B } ) ) ) ) ) |
| 19 | 15 18 | mpbird | |- ( ph -> E* x x e. ( F limCC B ) ) |