This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lidlsubcl.m | ⊢ − = ( -g ‘ 𝑅 ) | ||
| Assertion | lidlsubcl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidlcl.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lidlsubcl.m | ⊢ − = ( -g ‘ 𝑅 ) | |
| 3 | 1 | lidlsubg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ) |
| 5 | simp3l | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑋 ∈ 𝐼 ) | |
| 6 | simp3r | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → 𝑌 ∈ 𝐼 ) | |
| 7 | 2 | subgsubcl | ⊢ ( ( 𝐼 ∈ ( SubGrp ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |
| 8 | 4 5 6 7 | syl3anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ ( 𝑋 ∈ 𝐼 ∧ 𝑌 ∈ 𝐼 ) ) → ( 𝑋 − 𝑌 ) ∈ 𝐼 ) |