This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element generates an ideal iff it is contained in the ideal and all elements are right-divided by it. (Contributed by Stefan O'Rear, 3-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lidldvgen.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| lidldvgen.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | ||
| lidldvgen.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | ||
| lidldvgen.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | lidldvgen | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ↔ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lidldvgen.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | lidldvgen.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 3 | lidldvgen.k | ⊢ 𝐾 = ( RSpan ‘ 𝑅 ) | |
| 4 | lidldvgen.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 5 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 6 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) | |
| 7 | 6 | snssd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → { 𝐺 } ⊆ 𝐵 ) |
| 8 | 3 1 | rspssid | ⊢ ( ( 𝑅 ∈ Ring ∧ { 𝐺 } ⊆ 𝐵 ) → { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) |
| 9 | 5 7 8 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) |
| 10 | snssg | ⊢ ( 𝐺 ∈ 𝐵 → ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ { 𝐺 } ⊆ ( 𝐾 ‘ { 𝐺 } ) ) ) |
| 12 | 9 11 | mpbird | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ) |
| 13 | 1 3 4 | rspsn | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑦 ∣ 𝐺 ∥ 𝑦 } ) |
| 14 | 13 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑦 ∣ 𝐺 ∥ 𝑦 } ) |
| 15 | 14 | eleq2d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝑥 ∈ { 𝑦 ∣ 𝐺 ∥ 𝑦 } ) ) |
| 16 | vex | ⊢ 𝑥 ∈ V | |
| 17 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐺 ∥ 𝑦 ↔ 𝐺 ∥ 𝑥 ) ) | |
| 18 | 16 17 | elab | ⊢ ( 𝑥 ∈ { 𝑦 ∣ 𝐺 ∥ 𝑦 } ↔ 𝐺 ∥ 𝑥 ) |
| 19 | 15 18 | bitrdi | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) ↔ 𝐺 ∥ 𝑥 ) ) |
| 20 | 19 | biimpd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) → 𝐺 ∥ 𝑥 ) ) |
| 21 | 20 | ralrimiv | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) |
| 22 | 12 21 | jca | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ∧ ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) ) |
| 23 | eleq2 | ⊢ ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( 𝐺 ∈ 𝐼 ↔ 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ) ) | |
| 24 | raleq | ⊢ ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ↔ ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ↔ ( 𝐺 ∈ ( 𝐾 ‘ { 𝐺 } ) ∧ ∀ 𝑥 ∈ ( 𝐾 ‘ { 𝐺 } ) 𝐺 ∥ 𝑥 ) ) ) |
| 26 | 22 25 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) → ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) ) |
| 27 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐼 → 𝐺 ∥ 𝑥 ) ) | |
| 28 | ssab | ⊢ ( 𝐼 ⊆ { 𝑥 ∣ 𝐺 ∥ 𝑥 } ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐼 → 𝐺 ∥ 𝑥 ) ) | |
| 29 | 27 28 | sylbb2 | ⊢ ( ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 → 𝐼 ⊆ { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
| 30 | 29 | ad2antll | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → 𝐼 ⊆ { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
| 31 | 1 3 4 | rspsn | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
| 32 | 31 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → ( 𝐾 ‘ { 𝐺 } ) = { 𝑥 ∣ 𝐺 ∥ 𝑥 } ) |
| 34 | 30 33 | sseqtrrd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → 𝐼 ⊆ ( 𝐾 ‘ { 𝐺 } ) ) |
| 35 | simpl1 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → 𝑅 ∈ Ring ) | |
| 36 | simpl2 | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → 𝐼 ∈ 𝑈 ) | |
| 37 | snssi | ⊢ ( 𝐺 ∈ 𝐼 → { 𝐺 } ⊆ 𝐼 ) | |
| 38 | 37 | adantl | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → { 𝐺 } ⊆ 𝐼 ) |
| 39 | 3 2 | rspssp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ { 𝐺 } ⊆ 𝐼 ) → ( 𝐾 ‘ { 𝐺 } ) ⊆ 𝐼 ) |
| 40 | 35 36 38 39 | syl3anc | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ 𝐺 ∈ 𝐼 ) → ( 𝐾 ‘ { 𝐺 } ) ⊆ 𝐼 ) |
| 41 | 40 | adantrr | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → ( 𝐾 ‘ { 𝐺 } ) ⊆ 𝐼 ) |
| 42 | 34 41 | eqssd | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) → 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) → 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ) ) |
| 44 | 26 43 | impbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐼 = ( 𝐾 ‘ { 𝐺 } ) ↔ ( 𝐺 ∈ 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 𝐺 ∥ 𝑥 ) ) ) |