This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ideal is principal iff it contains an element which right-divides all elements. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Wolf Lammen, 6-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lpigen.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| lpigen.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | ||
| lpigen.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | ||
| Assertion | lpigen | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lpigen.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | lpigen.p | ⊢ 𝑃 = ( LPIdeal ‘ 𝑅 ) | |
| 3 | lpigen.d | ⊢ ∥ = ( ∥r ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( RSpan ‘ 𝑅 ) = ( RSpan ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 2 4 5 | islpidl | ⊢ ( 𝑅 ∈ Ring → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ) ) |
| 8 | 5 1 4 3 | lidldvgen | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
| 10 | 9 | rexbidva | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝐼 = ( ( RSpan ‘ 𝑅 ) ‘ { 𝑥 } ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
| 11 | simpr | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) → ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) | |
| 12 | 5 1 | lidlss | ⊢ ( 𝐼 ∈ 𝑈 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
| 14 | 13 | sseld | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝑥 ∈ 𝐼 → 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 15 | 14 | adantrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) ) |
| 16 | 15 | ancrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) ) |
| 17 | 11 16 | impbid2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ↔ ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) ) |
| 18 | 17 | rexbidv2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) ( 𝑥 ∈ 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) |
| 19 | 7 10 18 | 3bitrd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ) → ( 𝐼 ∈ 𝑃 ↔ ∃ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ 𝐼 𝑥 ∥ 𝑦 ) ) |