This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | leordtval.1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| Assertion | leordtvallem1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| 2 | iocssxr | ⊢ ( 𝑥 (,] +∞ ) ⊆ ℝ* | |
| 3 | sseqin2 | ⊢ ( ( 𝑥 (,] +∞ ) ⊆ ℝ* ↔ ( ℝ* ∩ ( 𝑥 (,] +∞ ) ) = ( 𝑥 (,] +∞ ) ) | |
| 4 | 2 3 | mpbi | ⊢ ( ℝ* ∩ ( 𝑥 (,] +∞ ) ) = ( 𝑥 (,] +∞ ) |
| 5 | simpl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) | |
| 6 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 7 | elioc1 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ( 𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
| 9 | simpr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) | |
| 10 | pnfge | ⊢ ( 𝑦 ∈ ℝ* → 𝑦 ≤ +∞ ) | |
| 11 | 9 10 | jccir | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞ ) ) |
| 12 | 11 | biantrurd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( ( 𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞ ) ∧ 𝑥 < 𝑦 ) ) ) |
| 13 | 3anan32 | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ↔ ( ( 𝑦 ∈ ℝ* ∧ 𝑦 ≤ +∞ ) ∧ 𝑥 < 𝑦 ) ) | |
| 14 | 12 13 | bitr4di | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ( 𝑦 ∈ ℝ* ∧ 𝑥 < 𝑦 ∧ 𝑦 ≤ +∞ ) ) ) |
| 15 | xrltnle | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑥 < 𝑦 ↔ ¬ 𝑦 ≤ 𝑥 ) ) | |
| 16 | 8 14 15 | 3bitr2d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( 𝑥 (,] +∞ ) ↔ ¬ 𝑦 ≤ 𝑥 ) ) |
| 17 | 16 | rabbi2dva | ⊢ ( 𝑥 ∈ ℝ* → ( ℝ* ∩ ( 𝑥 (,] +∞ ) ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 18 | 4 17 | eqtr3id | ⊢ ( 𝑥 ∈ ℝ* → ( 𝑥 (,] +∞ ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 19 | 18 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 20 | 19 | rneqi | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |
| 21 | 1 20 | eqtri | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑦 ≤ 𝑥 } ) |