This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for leordtval . (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leordtval.1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| leordtval.2 | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | ||
| Assertion | leordtvallem2 | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leordtval.1 | ⊢ 𝐴 = ran ( 𝑥 ∈ ℝ* ↦ ( 𝑥 (,] +∞ ) ) | |
| 2 | leordtval.2 | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) | |
| 3 | icossxr | ⊢ ( -∞ [,) 𝑥 ) ⊆ ℝ* | |
| 4 | sseqin2 | ⊢ ( ( -∞ [,) 𝑥 ) ⊆ ℝ* ↔ ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = ( -∞ [,) 𝑥 ) ) | |
| 5 | 3 4 | mpbi | ⊢ ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = ( -∞ [,) 𝑥 ) |
| 6 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 7 | simpl | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑥 ∈ ℝ* ) | |
| 8 | elico1 | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) | |
| 9 | 6 7 8 | sylancr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 10 | simpr | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → 𝑦 ∈ ℝ* ) | |
| 11 | mnfle | ⊢ ( 𝑦 ∈ ℝ* → -∞ ≤ 𝑦 ) | |
| 12 | 10 11 | jccir | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ) |
| 13 | 12 | biantrurd | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ∧ 𝑦 < 𝑥 ) ) ) |
| 14 | df-3an | ⊢ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ↔ ( ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ) ∧ 𝑦 < 𝑥 ) ) | |
| 15 | 13 14 | bitr4di | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ( 𝑦 ∈ ℝ* ∧ -∞ ≤ 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 16 | xrltnle | ⊢ ( ( 𝑦 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) | |
| 17 | 16 | ancoms | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 < 𝑥 ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
| 18 | 9 15 17 | 3bitr2d | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( 𝑦 ∈ ( -∞ [,) 𝑥 ) ↔ ¬ 𝑥 ≤ 𝑦 ) ) |
| 19 | 18 | rabbi2dva | ⊢ ( 𝑥 ∈ ℝ* → ( ℝ* ∩ ( -∞ [,) 𝑥 ) ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 20 | 5 19 | eqtr3id | ⊢ ( 𝑥 ∈ ℝ* → ( -∞ [,) 𝑥 ) = { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 21 | 20 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 22 | 21 | rneqi | ⊢ ran ( 𝑥 ∈ ℝ* ↦ ( -∞ [,) 𝑥 ) ) = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |
| 23 | 2 22 | eqtri | ⊢ 𝐵 = ran ( 𝑥 ∈ ℝ* ↦ { 𝑦 ∈ ℝ* ∣ ¬ 𝑥 ≤ 𝑦 } ) |