This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isocnv3.1 | ⊢ 𝐶 = ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) | |
| isocnv3.2 | ⊢ 𝐷 = ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) | ||
| Assertion | isocnv3 | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝐶 , 𝐷 ( 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isocnv3.1 | ⊢ 𝐶 = ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) | |
| 2 | isocnv3.2 | ⊢ 𝐷 = ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) | |
| 3 | notbi | ⊢ ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) | |
| 4 | brxp | ⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) | |
| 5 | 1 | breqi | ⊢ ( 𝑥 𝐶 𝑦 ↔ 𝑥 ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) 𝑦 ) |
| 6 | brdif | ⊢ ( 𝑥 ( ( 𝐴 × 𝐴 ) ∖ 𝑅 ) 𝑦 ↔ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ ¬ 𝑥 𝑅 𝑦 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( 𝑥 𝐶 𝑦 ↔ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 ∧ ¬ 𝑥 𝑅 𝑦 ) ) |
| 8 | 7 | baib | ⊢ ( 𝑥 ( 𝐴 × 𝐴 ) 𝑦 → ( 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 9 | 4 8 | sylbir | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑥 𝐶 𝑦 ↔ ¬ 𝑥 𝑅 𝑦 ) ) |
| 11 | f1of | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 ⟶ 𝐵 ) | |
| 12 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) | |
| 13 | ffvelcdm | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) | |
| 14 | 12 13 | anim12dan | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) ) |
| 15 | brxp | ⊢ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ∧ ( 𝐻 ‘ 𝑦 ) ∈ 𝐵 ) ) | |
| 16 | 14 15 | sylibr | ⊢ ( ( 𝐻 : 𝐴 ⟶ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ) |
| 17 | 11 16 | sylan | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ) |
| 18 | 2 | breqi | ⊢ ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ( 𝐻 ‘ 𝑥 ) ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) ( 𝐻 ‘ 𝑦 ) ) |
| 19 | brdif | ⊢ ( ( 𝐻 ‘ 𝑥 ) ( ( 𝐵 × 𝐵 ) ∖ 𝑆 ) ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ∧ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) | |
| 20 | 18 19 | bitri | ⊢ ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) ∧ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 21 | 20 | baib | ⊢ ( ( 𝐻 ‘ 𝑥 ) ( 𝐵 × 𝐵 ) ( 𝐻 ‘ 𝑦 ) → ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 22 | 17 21 | syl | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) |
| 23 | 10 22 | bibi12d | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ↔ ( ¬ 𝑥 𝑅 𝑦 ↔ ¬ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 24 | 3 23 | bitr4id | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 25 | 24 | 2ralbidva | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 26 | 25 | pm5.32i | ⊢ ( ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) |
| 27 | df-isom | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝑅 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝑆 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 28 | df-isom | ⊢ ( 𝐻 Isom 𝐶 , 𝐷 ( 𝐴 , 𝐵 ) ↔ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 ( 𝑥 𝐶 𝑦 ↔ ( 𝐻 ‘ 𝑥 ) 𝐷 ( 𝐻 ‘ 𝑦 ) ) ) ) | |
| 29 | 26 27 28 | 3bitr4i | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ↔ 𝐻 Isom 𝐶 , 𝐷 ( 𝐴 , 𝐵 ) ) |