This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐷 ∈ ℝ ) | |
| 2 | 0re | ⊢ 0 ∈ ℝ | |
| 3 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 0 < 𝐷 ) ) | |
| 4 | 2 3 | mp3an1 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) → ( ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) → 0 < 𝐷 ) ) |
| 5 | 4 | imp | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 0 < 𝐷 ) |
| 6 | 5 | gt0ne0d | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐷 ≠ 0 ) |
| 7 | 1 6 | rereccld | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 1 / 𝐷 ) ∈ ℝ ) |
| 8 | gt0ne0 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) | |
| 9 | rereccl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 1 / 𝐶 ) ∈ ℝ ) | |
| 10 | 8 9 | syldan | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 1 / 𝐶 ) ∈ ℝ ) |
| 11 | 10 | ad2ant2r | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 1 / 𝐶 ) ∈ ℝ ) |
| 12 | recgt0 | ⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 0 < ( 1 / 𝐷 ) ) | |
| 13 | 1 5 12 | syl2anc | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 0 < ( 1 / 𝐷 ) ) |
| 14 | ltle | ⊢ ( ( 0 ∈ ℝ ∧ ( 1 / 𝐷 ) ∈ ℝ ) → ( 0 < ( 1 / 𝐷 ) → 0 ≤ ( 1 / 𝐷 ) ) ) | |
| 15 | 2 7 14 | sylancr | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 0 < ( 1 / 𝐷 ) → 0 ≤ ( 1 / 𝐷 ) ) ) |
| 16 | 13 15 | mpd | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 0 ≤ ( 1 / 𝐷 ) ) |
| 17 | simprr | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐶 ≤ 𝐷 ) | |
| 18 | id | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) | |
| 19 | 18 | ad2ant2r | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) |
| 20 | lerec | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) | |
| 21 | 19 1 5 20 | syl12anc | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 𝐶 ≤ 𝐷 ↔ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) |
| 22 | 17 21 | mpbid | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) |
| 23 | 16 22 | jca | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) |
| 24 | 7 11 23 | jca31 | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) |
| 25 | simplll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → 𝐴 ∈ ℝ ) | |
| 26 | simplrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → 0 ≤ 𝐴 ) | |
| 27 | simpllr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → 𝐵 ∈ ℝ ) | |
| 28 | 25 26 27 | jca31 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ) |
| 29 | simprll | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( 1 / 𝐷 ) ∈ ℝ ) | |
| 30 | simprrl | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → 0 ≤ ( 1 / 𝐷 ) ) | |
| 31 | 29 30 | jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( ( 1 / 𝐷 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐷 ) ) ) |
| 32 | simprlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( 1 / 𝐶 ) ∈ ℝ ) | |
| 33 | 28 31 32 | jca32 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐷 ) ) ∧ ( 1 / 𝐶 ) ∈ ℝ ) ) ) |
| 34 | simplrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → 𝐴 ≤ 𝐵 ) | |
| 35 | simprrr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) | |
| 36 | 34 35 | jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( 𝐴 ≤ 𝐵 ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) |
| 37 | lemul12a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝐵 ∈ ℝ ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ 0 ≤ ( 1 / 𝐷 ) ) ∧ ( 1 / 𝐶 ) ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) → ( 𝐴 · ( 1 / 𝐷 ) ) ≤ ( 𝐵 · ( 1 / 𝐶 ) ) ) ) | |
| 38 | 33 36 37 | sylc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( ( 1 / 𝐷 ) ∈ ℝ ∧ ( 1 / 𝐶 ) ∈ ℝ ) ∧ ( 0 ≤ ( 1 / 𝐷 ) ∧ ( 1 / 𝐷 ) ≤ ( 1 / 𝐶 ) ) ) ) → ( 𝐴 · ( 1 / 𝐷 ) ) ≤ ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 39 | 24 38 | sylan2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 · ( 1 / 𝐷 ) ) ≤ ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 40 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 41 | 40 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → 𝐴 ∈ ℂ ) |
| 42 | recn | ⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) | |
| 43 | 42 | ad2antlr | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) → 𝐷 ∈ ℂ ) |
| 44 | 43 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → 𝐷 ∈ ℂ ) |
| 45 | 6 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → 𝐷 ≠ 0 ) |
| 46 | 41 44 45 | divrecd | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 / 𝐷 ) = ( 𝐴 · ( 1 / 𝐷 ) ) ) |
| 47 | 46 | ad4ant14 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 / 𝐷 ) = ( 𝐴 · ( 1 / 𝐷 ) ) ) |
| 48 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 49 | 48 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐵 ∈ ℂ ) |
| 50 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 51 | 50 | ad2antrl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ∈ ℂ ) |
| 52 | 8 | adantl | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐶 ≠ 0 ) |
| 53 | 49 51 52 | divrecd | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 54 | 53 | adantrrr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 55 | 54 | adantrlr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 56 | 55 | ad4ant24 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐵 / 𝐶 ) = ( 𝐵 · ( 1 / 𝐶 ) ) ) |
| 57 | 39 47 56 | 3brtr4d | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ) ∧ ( 0 < 𝐶 ∧ 𝐶 ≤ 𝐷 ) ) ) → ( 𝐴 / 𝐷 ) ≤ ( 𝐵 / 𝐶 ) ) |