This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lediv2a | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 / 𝐵 ) ≤ ( 𝐶 / 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2 | ⊢ ( 𝐶 ∈ ℝ → ( 𝐶 ∈ ℝ → ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) ) | |
| 2 | 1 | pm2.43i | ⊢ ( 𝐶 ∈ ℝ → ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ) |
| 4 | leid | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ≤ 𝐶 ) | |
| 5 | 4 | anim1ci | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐶 ) ) |
| 6 | 3 5 | jca | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) → ( ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐶 ) ) ) |
| 7 | 6 | ad2antlr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐶 ) ) ) |
| 8 | 7 | 3adantl2 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐶 ) ) ) |
| 9 | id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) | |
| 10 | 9 | ad2ant2r | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 12 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < 𝐴 ) | |
| 13 | 12 | anim1i | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) |
| 14 | 11 13 | jca | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 15 | 14 | 3adantl3 | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) |
| 16 | lediv12a | ⊢ ( ( ( ( 𝐶 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 0 ≤ 𝐶 ∧ 𝐶 ≤ 𝐶 ) ) ∧ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) ) → ( 𝐶 / 𝐵 ) ≤ ( 𝐶 / 𝐴 ) ) | |
| 17 | 8 15 16 | syl2anc | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 / 𝐵 ) ≤ ( 𝐶 / 𝐴 ) ) |