This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the _lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( lcm ‘ { 𝑀 , 𝑁 } ) = ( 𝑀 lcm 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | ⊢ 0 ∈ V | |
| 2 | 1 | elpr | ⊢ ( 0 ∈ { 𝑀 , 𝑁 } ↔ ( 0 = 𝑀 ∨ 0 = 𝑁 ) ) |
| 3 | eqcom | ⊢ ( 0 = 𝑀 ↔ 𝑀 = 0 ) | |
| 4 | eqcom | ⊢ ( 0 = 𝑁 ↔ 𝑁 = 0 ) | |
| 5 | 3 4 | orbi12i | ⊢ ( ( 0 = 𝑀 ∨ 0 = 𝑁 ) ↔ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) |
| 6 | 2 5 | bitri | ⊢ ( 0 ∈ { 𝑀 , 𝑁 } ↔ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ∈ { 𝑀 , 𝑁 } ↔ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ) |
| 8 | breq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛 ) ) | |
| 9 | breq1 | ⊢ ( 𝑚 = 𝑁 → ( 𝑚 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛 ) ) | |
| 10 | 8 9 | ralprg | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∀ 𝑚 ∈ { 𝑀 , 𝑁 } 𝑚 ∥ 𝑛 ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) |
| 11 | 10 | rabbidv | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ { 𝑀 , 𝑁 } 𝑚 ∥ 𝑛 } = { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
| 12 | 11 | infeq1d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ { 𝑀 , 𝑁 } 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 13 | 7 12 | ifbieq2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → if ( 0 ∈ { 𝑀 , 𝑁 } , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ { 𝑀 , 𝑁 } 𝑚 ∥ 𝑛 } , ℝ , < ) ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 14 | prssi | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → { 𝑀 , 𝑁 } ⊆ ℤ ) | |
| 15 | prfi | ⊢ { 𝑀 , 𝑁 } ∈ Fin | |
| 16 | lcmfval | ⊢ ( ( { 𝑀 , 𝑁 } ⊆ ℤ ∧ { 𝑀 , 𝑁 } ∈ Fin ) → ( lcm ‘ { 𝑀 , 𝑁 } ) = if ( 0 ∈ { 𝑀 , 𝑁 } , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ { 𝑀 , 𝑁 } 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) | |
| 17 | 14 15 16 | sylancl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( lcm ‘ { 𝑀 , 𝑁 } ) = if ( 0 ∈ { 𝑀 , 𝑁 } , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ { 𝑀 , 𝑁 } 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 18 | lcmval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) | |
| 19 | 13 17 18 | 3eqtr4d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( lcm ‘ { 𝑀 , 𝑁 } ) = ( 𝑀 lcm 𝑁 ) ) |