This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the _lcm function. ( _lcmZ ) is the least common multiple of the integers contained in the finite subset of integers Z . If at least one of the elements of Z is 0 , the result is defined conventionally as 0 . (Contributed by AV, 21-Apr-2020) (Revised by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfval | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lcmf | ⊢ lcm = ( 𝑧 ∈ 𝒫 ℤ ↦ if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) | |
| 2 | eleq2 | ⊢ ( 𝑧 = 𝑍 → ( 0 ∈ 𝑧 ↔ 0 ∈ 𝑍 ) ) | |
| 3 | raleq | ⊢ ( 𝑧 = 𝑍 → ( ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 ) ) | |
| 4 | 3 | rabbidv | ⊢ ( 𝑧 = 𝑍 → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } = { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 5 | 4 | infeq1d | ⊢ ( 𝑧 = 𝑍 → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) |
| 6 | 2 5 | ifbieq2d | ⊢ ( 𝑧 = 𝑍 → if ( 0 ∈ 𝑧 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑧 𝑚 ∥ 𝑛 } , ℝ , < ) ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |
| 7 | zex | ⊢ ℤ ∈ V | |
| 8 | 7 | ssex | ⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ V ) |
| 9 | elpwg | ⊢ ( 𝑍 ∈ V → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝑍 ⊆ ℤ → ( 𝑍 ∈ 𝒫 ℤ ↔ 𝑍 ⊆ ℤ ) ) |
| 11 | 10 | ibir | ⊢ ( 𝑍 ⊆ ℤ → 𝑍 ∈ 𝒫 ℤ ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → 𝑍 ∈ 𝒫 ℤ ) |
| 13 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 14 | 13 | a1i | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) → 0 ∈ ℕ0 ) |
| 15 | df-nel | ⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) | |
| 16 | ssrab2 | ⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ℕ | |
| 17 | nnssnn0 | ⊢ ℕ ⊆ ℕ0 | |
| 18 | 16 17 | sstri | ⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ℕ0 |
| 19 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 20 | 16 19 | sseqtri | ⊢ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ( ℤ≥ ‘ 1 ) |
| 21 | fissn0dvdsn0 | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) | |
| 22 | 21 | 3expa | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) |
| 23 | infssuzcl | ⊢ ( ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ⊆ ( ℤ≥ ‘ 1 ) ∧ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ≠ ∅ ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) | |
| 24 | 20 22 23 | sylancr | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } ) |
| 25 | 18 24 | sselid | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ ℕ0 ) |
| 26 | 15 25 | sylan2br | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ∈ ℕ0 ) |
| 27 | 14 26 | ifclda | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ∈ ℕ0 ) |
| 28 | 1 6 12 27 | fvmptd3 | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) = if ( 0 ∈ 𝑍 , 0 , inf ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑛 } , ℝ , < ) ) ) |