This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the _lcm function for an unordered pair is the value of the lcm operator for both elements. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( _lcm ` { M , N } ) = ( M lcm N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex | |- 0 e. _V |
|
| 2 | 1 | elpr | |- ( 0 e. { M , N } <-> ( 0 = M \/ 0 = N ) ) |
| 3 | eqcom | |- ( 0 = M <-> M = 0 ) |
|
| 4 | eqcom | |- ( 0 = N <-> N = 0 ) |
|
| 5 | 3 4 | orbi12i | |- ( ( 0 = M \/ 0 = N ) <-> ( M = 0 \/ N = 0 ) ) |
| 6 | 2 5 | bitri | |- ( 0 e. { M , N } <-> ( M = 0 \/ N = 0 ) ) |
| 7 | 6 | a1i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 e. { M , N } <-> ( M = 0 \/ N = 0 ) ) ) |
| 8 | breq1 | |- ( m = M -> ( m || n <-> M || n ) ) |
|
| 9 | breq1 | |- ( m = N -> ( m || n <-> N || n ) ) |
|
| 10 | 8 9 | ralprg | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( A. m e. { M , N } m || n <-> ( M || n /\ N || n ) ) ) |
| 11 | 10 | rabbidv | |- ( ( M e. ZZ /\ N e. ZZ ) -> { n e. NN | A. m e. { M , N } m || n } = { n e. NN | ( M || n /\ N || n ) } ) |
| 12 | 11 | infeq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> inf ( { n e. NN | A. m e. { M , N } m || n } , RR , < ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
| 13 | 7 12 | ifbieq2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> if ( 0 e. { M , N } , 0 , inf ( { n e. NN | A. m e. { M , N } m || n } , RR , < ) ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |
| 14 | prssi | |- ( ( M e. ZZ /\ N e. ZZ ) -> { M , N } C_ ZZ ) |
|
| 15 | prfi | |- { M , N } e. Fin |
|
| 16 | lcmfval | |- ( ( { M , N } C_ ZZ /\ { M , N } e. Fin ) -> ( _lcm ` { M , N } ) = if ( 0 e. { M , N } , 0 , inf ( { n e. NN | A. m e. { M , N } m || n } , RR , < ) ) ) |
|
| 17 | 14 15 16 | sylancl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( _lcm ` { M , N } ) = if ( 0 e. { M , N } , 0 , inf ( { n e. NN | A. m e. { M , N } m || n } , RR , < ) ) ) |
| 18 | lcmval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = if ( ( M = 0 \/ N = 0 ) , 0 , inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) ) |
|
| 19 | 13 17 18 | 3eqtr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( _lcm ` { M , N } ) = ( M lcm N ) ) |