This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the lcm operator. ( M lcm N ) is the least common multiple of M and N . If either M or N is 0 , the result is defined conventionally as 0 . Contrast with df-gcd and gcdval . (Contributed by Steve Rodriguez, 20-Jan-2020) (Revised by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmval | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 = 0 ↔ 𝑀 = 0 ) ) | |
| 2 | 1 | orbi1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑀 = 0 ∨ 𝑦 = 0 ) ) ) |
| 3 | breq1 | ⊢ ( 𝑥 = 𝑀 → ( 𝑥 ∥ 𝑛 ↔ 𝑀 ∥ 𝑛 ) ) | |
| 4 | 3 | anbi1d | ⊢ ( 𝑥 = 𝑀 → ( ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) ) ) |
| 5 | 4 | rabbidv | ⊢ ( 𝑥 = 𝑀 → { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } = { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } ) |
| 6 | 5 | infeq1d | ⊢ ( 𝑥 = 𝑀 → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) |
| 7 | 2 6 | ifbieq2d | ⊢ ( 𝑥 = 𝑀 → if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) = if ( ( 𝑀 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 8 | eqeq1 | ⊢ ( 𝑦 = 𝑁 → ( 𝑦 = 0 ↔ 𝑁 = 0 ) ) | |
| 9 | 8 | orbi2d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑀 = 0 ∨ 𝑦 = 0 ) ↔ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) ) |
| 10 | breq1 | ⊢ ( 𝑦 = 𝑁 → ( 𝑦 ∥ 𝑛 ↔ 𝑁 ∥ 𝑛 ) ) | |
| 11 | 10 | anbi2d | ⊢ ( 𝑦 = 𝑁 → ( ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) ↔ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ) ) |
| 12 | 11 | rabbidv | ⊢ ( 𝑦 = 𝑁 → { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } = { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) |
| 13 | 12 | infeq1d | ⊢ ( 𝑦 = 𝑁 → inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) = inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) |
| 14 | 9 13 | ifbieq2d | ⊢ ( 𝑦 = 𝑁 → if ( ( 𝑀 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) |
| 15 | df-lcm | ⊢ lcm = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℤ ↦ if ( ( 𝑥 = 0 ∨ 𝑦 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑥 ∥ 𝑛 ∧ 𝑦 ∥ 𝑛 ) } , ℝ , < ) ) ) | |
| 16 | c0ex | ⊢ 0 ∈ V | |
| 17 | ltso | ⊢ < Or ℝ | |
| 18 | 17 | infex | ⊢ inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ∈ V |
| 19 | 16 18 | ifex | ⊢ if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ∈ V |
| 20 | 7 14 15 19 | ovmpo | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = if ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) , 0 , inf ( { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } , ℝ , < ) ) ) |