This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer which is divisible by all elements of a set of integers bounds the least common multiple of the set. (Contributed by AV, 22-Aug-2020) (Proof shortened by AV, 16-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfledvds | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) → ( lcm ‘ 𝑍 ) ≤ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfn0val | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) = inf ( { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } , ℝ , < ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ∧ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) → ( lcm ‘ 𝑍 ) = inf ( { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } , ℝ , < ) ) |
| 3 | ssrab2 | ⊢ { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } ⊆ ℕ | |
| 4 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 5 | 3 4 | sseqtri | ⊢ { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } ⊆ ( ℤ≥ ‘ 1 ) |
| 6 | simpr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) → ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) | |
| 7 | breq2 | ⊢ ( 𝑘 = 𝐾 → ( 𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝐾 ) ) | |
| 8 | 7 | ralbidv | ⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) |
| 9 | 8 | elrab | ⊢ ( 𝐾 ∈ { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } ↔ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) |
| 10 | 6 9 | sylibr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) → 𝐾 ∈ { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } ) |
| 11 | infssuzle | ⊢ ( ( { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } ⊆ ( ℤ≥ ‘ 1 ) ∧ 𝐾 ∈ { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } ) → inf ( { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } , ℝ , < ) ≤ 𝐾 ) | |
| 12 | 5 10 11 | sylancr | ⊢ ( ( 𝑍 ⊆ ℤ ∧ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) → inf ( { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } , ℝ , < ) ≤ 𝐾 ) |
| 13 | 12 | 3ad2antl1 | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ∧ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) → inf ( { 𝑘 ∈ ℕ ∣ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 } , ℝ , < ) ≤ 𝐾 ) |
| 14 | 2 13 | eqbrtrd | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ∧ ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) ) → ( lcm ‘ 𝑍 ) ≤ 𝐾 ) |
| 15 | 14 | ex | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) → ( lcm ‘ 𝑍 ) ≤ 𝐾 ) ) |