This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lbspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lbspropd.w | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | ||
| lbspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lbspropd.s1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | ||
| lbspropd.s2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| lbspropd.f | ⊢ 𝐹 = ( Scalar ‘ 𝐾 ) | ||
| lbspropd.g | ⊢ 𝐺 = ( Scalar ‘ 𝐿 ) | ||
| lbspropd.p1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) | ||
| lbspropd.p2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) | ||
| lbspropd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | ||
| lbspropd.v1 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | ||
| lbspropd.v2 | ⊢ ( 𝜑 → 𝐿 ∈ 𝑌 ) | ||
| Assertion | lbspropd | ⊢ ( 𝜑 → ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lbspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lbspropd.w | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | |
| 4 | lbspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | lbspropd.s1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | |
| 6 | lbspropd.s2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 7 | lbspropd.f | ⊢ 𝐹 = ( Scalar ‘ 𝐾 ) | |
| 8 | lbspropd.g | ⊢ 𝐺 = ( Scalar ‘ 𝐿 ) | |
| 9 | lbspropd.p1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐹 ) ) | |
| 10 | lbspropd.p2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ 𝐺 ) ) | |
| 11 | lbspropd.a | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝑃 ) ) → ( 𝑥 ( +g ‘ 𝐹 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 12 | lbspropd.v1 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | |
| 13 | lbspropd.v2 | ⊢ ( 𝜑 → 𝐿 ∈ 𝑌 ) | |
| 14 | simplll | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → 𝜑 ) | |
| 15 | eldifi | ⊢ ( 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) → 𝑣 ∈ 𝑃 ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → 𝑣 ∈ 𝑃 ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ 𝐵 ) | |
| 18 | 17 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → 𝑢 ∈ 𝐵 ) |
| 19 | 18 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → 𝑢 ∈ 𝐵 ) |
| 20 | 6 | oveqrspc2v | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝑃 ∧ 𝑢 ∈ 𝐵 ) ) → ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) = ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ) |
| 21 | 14 16 19 20 | syl12anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) = ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ) |
| 22 | 7 | fveq2i | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ ( Scalar ‘ 𝐾 ) ) |
| 23 | 9 22 | eqtrdi | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) |
| 24 | 8 | fveq2i | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ ( Scalar ‘ 𝐿 ) ) |
| 25 | 10 24 | eqtrdi | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) |
| 26 | 1 2 3 4 5 6 23 25 12 13 | lsppropd | ⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) ) |
| 27 | 14 26 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) ) |
| 28 | 27 | fveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) = ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) |
| 29 | 21 28 | eleq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → ( ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 30 | 29 | notbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) ∧ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ) → ( ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 31 | 30 | ralbidva | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( ∀ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ∀ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 32 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → 𝑃 = ( Base ‘ 𝐹 ) ) |
| 33 | 32 | difeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) = ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 34 | 33 | raleqdv | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( ∀ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 35 | 10 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → 𝑃 = ( Base ‘ 𝐺 ) ) |
| 36 | 9 10 11 | grpidpropd | ⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐺 ) ) |
| 38 | 37 | sneqd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → { ( 0g ‘ 𝐹 ) } = { ( 0g ‘ 𝐺 ) } ) |
| 39 | 35 38 | difeq12d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) = ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ) |
| 40 | 39 | raleqdv | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( ∀ 𝑣 ∈ ( 𝑃 ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 41 | 31 34 40 | 3bitr3d | ⊢ ( ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑢 ∈ 𝑧 ) → ( ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 42 | 41 | ralbidva | ⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ↔ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) |
| 43 | 42 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ↔ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 44 | 43 | pm5.32da | ⊢ ( 𝜑 → ( ( 𝑧 ⊆ 𝐵 ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ↔ ( 𝑧 ⊆ 𝐵 ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) ) |
| 45 | 1 | sseq2d | ⊢ ( 𝜑 → ( 𝑧 ⊆ 𝐵 ↔ 𝑧 ⊆ ( Base ‘ 𝐾 ) ) ) |
| 46 | 45 | anbi1d | ⊢ ( 𝜑 → ( ( 𝑧 ⊆ 𝐵 ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) ) |
| 47 | 2 | sseq2d | ⊢ ( 𝜑 → ( 𝑧 ⊆ 𝐵 ↔ 𝑧 ⊆ ( Base ‘ 𝐿 ) ) ) |
| 48 | 26 | fveq1d | ⊢ ( 𝜑 → ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) ) |
| 49 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 50 | 48 49 | eqeq12d | ⊢ ( 𝜑 → ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ↔ ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ) ) |
| 51 | 50 | anbi1d | ⊢ ( 𝜑 → ( ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ↔ ( ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 52 | 47 51 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑧 ⊆ 𝐵 ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) ) |
| 53 | 44 46 52 | 3bitr3d | ⊢ ( 𝜑 → ( ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) ) |
| 54 | 3anass | ⊢ ( ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) | |
| 55 | 3anass | ⊢ ( ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) | |
| 56 | 53 54 55 | 3bitr4g | ⊢ ( 𝜑 → ( ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 57 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 58 | eqid | ⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) | |
| 59 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 60 | eqid | ⊢ ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐾 ) | |
| 61 | eqid | ⊢ ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 ) | |
| 62 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 63 | 57 7 58 59 60 61 62 | islbs | ⊢ ( 𝐾 ∈ 𝑋 → ( 𝑧 ∈ ( LBasis ‘ 𝐾 ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 64 | 12 63 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( LBasis ‘ 𝐾 ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐾 ) ∧ ( ( LSpan ‘ 𝐾 ) ‘ 𝑧 ) = ( Base ‘ 𝐾 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐹 ) ∖ { ( 0g ‘ 𝐹 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐾 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐾 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 65 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 66 | eqid | ⊢ ( ·𝑠 ‘ 𝐿 ) = ( ·𝑠 ‘ 𝐿 ) | |
| 67 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 68 | eqid | ⊢ ( LBasis ‘ 𝐿 ) = ( LBasis ‘ 𝐿 ) | |
| 69 | eqid | ⊢ ( LSpan ‘ 𝐿 ) = ( LSpan ‘ 𝐿 ) | |
| 70 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 71 | 65 8 66 67 68 69 70 | islbs | ⊢ ( 𝐿 ∈ 𝑌 → ( 𝑧 ∈ ( LBasis ‘ 𝐿 ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 72 | 13 71 | syl | ⊢ ( 𝜑 → ( 𝑧 ∈ ( LBasis ‘ 𝐿 ) ↔ ( 𝑧 ⊆ ( Base ‘ 𝐿 ) ∧ ( ( LSpan ‘ 𝐿 ) ‘ 𝑧 ) = ( Base ‘ 𝐿 ) ∧ ∀ 𝑢 ∈ 𝑧 ∀ 𝑣 ∈ ( ( Base ‘ 𝐺 ) ∖ { ( 0g ‘ 𝐺 ) } ) ¬ ( 𝑣 ( ·𝑠 ‘ 𝐿 ) 𝑢 ) ∈ ( ( LSpan ‘ 𝐿 ) ‘ ( 𝑧 ∖ { 𝑢 } ) ) ) ) ) |
| 73 | 56 64 72 | 3bitr4d | ⊢ ( 𝜑 → ( 𝑧 ∈ ( LBasis ‘ 𝐾 ) ↔ 𝑧 ∈ ( LBasis ‘ 𝐿 ) ) ) |
| 74 | 73 | eqrdv | ⊢ ( 𝜑 → ( LBasis ‘ 𝐾 ) = ( LBasis ‘ 𝐿 ) ) |