This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same span function. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| lsspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| lsspropd.w | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | ||
| lsspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| lsspropd.s1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | ||
| lsspropd.s2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | ||
| lsspropd.p1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) | ||
| lsspropd.p2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) | ||
| lsppropd.v1 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | ||
| lsppropd.v2 | ⊢ ( 𝜑 → 𝐿 ∈ 𝑌 ) | ||
| Assertion | lsppropd | ⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsspropd.b1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | lsspropd.b2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | lsspropd.w | ⊢ ( 𝜑 → 𝐵 ⊆ 𝑊 ) | |
| 4 | lsspropd.p | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑊 ∧ 𝑦 ∈ 𝑊 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 5 | lsspropd.s1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) ∈ 𝑊 ) | |
| 6 | lsspropd.s2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝐿 ) 𝑦 ) ) | |
| 7 | lsspropd.p1 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐾 ) ) ) | |
| 8 | lsspropd.p2 | ⊢ ( 𝜑 → 𝑃 = ( Base ‘ ( Scalar ‘ 𝐿 ) ) ) | |
| 9 | lsppropd.v1 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | |
| 10 | lsppropd.v2 | ⊢ ( 𝜑 → 𝐿 ∈ 𝑌 ) | |
| 11 | 1 2 | eqtr3d | ⊢ ( 𝜑 → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) |
| 12 | 11 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Base ‘ 𝐾 ) = 𝒫 ( Base ‘ 𝐿 ) ) |
| 13 | 1 2 3 4 5 6 7 8 | lsspropd | ⊢ ( 𝜑 → ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐿 ) ) |
| 14 | 13 | rabeqdv | ⊢ ( 𝜑 → { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } = { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
| 15 | 14 | inteqd | ⊢ ( 𝜑 → ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } = ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) |
| 16 | 12 15 | mpteq12dv | ⊢ ( 𝜑 → ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 17 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 18 | eqid | ⊢ ( LSubSp ‘ 𝐾 ) = ( LSubSp ‘ 𝐾 ) | |
| 19 | eqid | ⊢ ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐾 ) | |
| 20 | 17 18 19 | lspfval | ⊢ ( 𝐾 ∈ 𝑋 → ( LSpan ‘ 𝐾 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 21 | 9 20 | syl | ⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐾 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐾 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 22 | eqid | ⊢ ( Base ‘ 𝐿 ) = ( Base ‘ 𝐿 ) | |
| 23 | eqid | ⊢ ( LSubSp ‘ 𝐿 ) = ( LSubSp ‘ 𝐿 ) | |
| 24 | eqid | ⊢ ( LSpan ‘ 𝐿 ) = ( LSpan ‘ 𝐿 ) | |
| 25 | 22 23 24 | lspfval | ⊢ ( 𝐿 ∈ 𝑌 → ( LSpan ‘ 𝐿 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 26 | 10 25 | syl | ⊢ ( 𝜑 → ( LSpan ‘ 𝐿 ) = ( 𝑠 ∈ 𝒫 ( Base ‘ 𝐿 ) ↦ ∩ { 𝑡 ∈ ( LSubSp ‘ 𝐿 ) ∣ 𝑠 ⊆ 𝑡 } ) ) |
| 27 | 16 21 26 | 3eqtr4d | ⊢ ( 𝜑 → ( LSpan ‘ 𝐾 ) = ( LSpan ‘ 𝐿 ) ) |