This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same components (properties), they have the same set of bases. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015) (Revised by AV, 24-Apr-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbspropd.b1 | |- ( ph -> B = ( Base ` K ) ) |
|
| lbspropd.b2 | |- ( ph -> B = ( Base ` L ) ) |
||
| lbspropd.w | |- ( ph -> B C_ W ) |
||
| lbspropd.p | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
||
| lbspropd.s1 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W ) |
||
| lbspropd.s2 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
||
| lbspropd.f | |- F = ( Scalar ` K ) |
||
| lbspropd.g | |- G = ( Scalar ` L ) |
||
| lbspropd.p1 | |- ( ph -> P = ( Base ` F ) ) |
||
| lbspropd.p2 | |- ( ph -> P = ( Base ` G ) ) |
||
| lbspropd.a | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` F ) y ) = ( x ( +g ` G ) y ) ) |
||
| lbspropd.v1 | |- ( ph -> K e. X ) |
||
| lbspropd.v2 | |- ( ph -> L e. Y ) |
||
| Assertion | lbspropd | |- ( ph -> ( LBasis ` K ) = ( LBasis ` L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbspropd.b1 | |- ( ph -> B = ( Base ` K ) ) |
|
| 2 | lbspropd.b2 | |- ( ph -> B = ( Base ` L ) ) |
|
| 3 | lbspropd.w | |- ( ph -> B C_ W ) |
|
| 4 | lbspropd.p | |- ( ( ph /\ ( x e. W /\ y e. W ) ) -> ( x ( +g ` K ) y ) = ( x ( +g ` L ) y ) ) |
|
| 5 | lbspropd.s1 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) e. W ) |
|
| 6 | lbspropd.s2 | |- ( ( ph /\ ( x e. P /\ y e. B ) ) -> ( x ( .s ` K ) y ) = ( x ( .s ` L ) y ) ) |
|
| 7 | lbspropd.f | |- F = ( Scalar ` K ) |
|
| 8 | lbspropd.g | |- G = ( Scalar ` L ) |
|
| 9 | lbspropd.p1 | |- ( ph -> P = ( Base ` F ) ) |
|
| 10 | lbspropd.p2 | |- ( ph -> P = ( Base ` G ) ) |
|
| 11 | lbspropd.a | |- ( ( ph /\ ( x e. P /\ y e. P ) ) -> ( x ( +g ` F ) y ) = ( x ( +g ` G ) y ) ) |
|
| 12 | lbspropd.v1 | |- ( ph -> K e. X ) |
|
| 13 | lbspropd.v2 | |- ( ph -> L e. Y ) |
|
| 14 | simplll | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> ph ) |
|
| 15 | eldifi | |- ( v e. ( P \ { ( 0g ` F ) } ) -> v e. P ) |
|
| 16 | 15 | adantl | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> v e. P ) |
| 17 | simpr | |- ( ( ph /\ z C_ B ) -> z C_ B ) |
|
| 18 | 17 | sselda | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> u e. B ) |
| 19 | 18 | adantr | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> u e. B ) |
| 20 | 6 | oveqrspc2v | |- ( ( ph /\ ( v e. P /\ u e. B ) ) -> ( v ( .s ` K ) u ) = ( v ( .s ` L ) u ) ) |
| 21 | 14 16 19 20 | syl12anc | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> ( v ( .s ` K ) u ) = ( v ( .s ` L ) u ) ) |
| 22 | 7 | fveq2i | |- ( Base ` F ) = ( Base ` ( Scalar ` K ) ) |
| 23 | 9 22 | eqtrdi | |- ( ph -> P = ( Base ` ( Scalar ` K ) ) ) |
| 24 | 8 | fveq2i | |- ( Base ` G ) = ( Base ` ( Scalar ` L ) ) |
| 25 | 10 24 | eqtrdi | |- ( ph -> P = ( Base ` ( Scalar ` L ) ) ) |
| 26 | 1 2 3 4 5 6 23 25 12 13 | lsppropd | |- ( ph -> ( LSpan ` K ) = ( LSpan ` L ) ) |
| 27 | 14 26 | syl | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> ( LSpan ` K ) = ( LSpan ` L ) ) |
| 28 | 27 | fveq1d | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> ( ( LSpan ` K ) ` ( z \ { u } ) ) = ( ( LSpan ` L ) ` ( z \ { u } ) ) ) |
| 29 | 21 28 | eleq12d | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> ( ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) <-> ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) |
| 30 | 29 | notbid | |- ( ( ( ( ph /\ z C_ B ) /\ u e. z ) /\ v e. ( P \ { ( 0g ` F ) } ) ) -> ( -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) <-> -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) |
| 31 | 30 | ralbidva | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( A. v e. ( P \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) <-> A. v e. ( P \ { ( 0g ` F ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) |
| 32 | 9 | ad2antrr | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> P = ( Base ` F ) ) |
| 33 | 32 | difeq1d | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( P \ { ( 0g ` F ) } ) = ( ( Base ` F ) \ { ( 0g ` F ) } ) ) |
| 34 | 33 | raleqdv | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( A. v e. ( P \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) <-> A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) |
| 35 | 10 | ad2antrr | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> P = ( Base ` G ) ) |
| 36 | 9 10 11 | grpidpropd | |- ( ph -> ( 0g ` F ) = ( 0g ` G ) ) |
| 37 | 36 | ad2antrr | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( 0g ` F ) = ( 0g ` G ) ) |
| 38 | 37 | sneqd | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> { ( 0g ` F ) } = { ( 0g ` G ) } ) |
| 39 | 35 38 | difeq12d | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( P \ { ( 0g ` F ) } ) = ( ( Base ` G ) \ { ( 0g ` G ) } ) ) |
| 40 | 39 | raleqdv | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( A. v e. ( P \ { ( 0g ` F ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) <-> A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) |
| 41 | 31 34 40 | 3bitr3d | |- ( ( ( ph /\ z C_ B ) /\ u e. z ) -> ( A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) <-> A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) |
| 42 | 41 | ralbidva | |- ( ( ph /\ z C_ B ) -> ( A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) <-> A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) |
| 43 | 42 | anbi2d | |- ( ( ph /\ z C_ B ) -> ( ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) <-> ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) |
| 44 | 43 | pm5.32da | |- ( ph -> ( ( z C_ B /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) <-> ( z C_ B /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) ) |
| 45 | 1 | sseq2d | |- ( ph -> ( z C_ B <-> z C_ ( Base ` K ) ) ) |
| 46 | 45 | anbi1d | |- ( ph -> ( ( z C_ B /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) <-> ( z C_ ( Base ` K ) /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) ) ) |
| 47 | 2 | sseq2d | |- ( ph -> ( z C_ B <-> z C_ ( Base ` L ) ) ) |
| 48 | 26 | fveq1d | |- ( ph -> ( ( LSpan ` K ) ` z ) = ( ( LSpan ` L ) ` z ) ) |
| 49 | 1 2 | eqtr3d | |- ( ph -> ( Base ` K ) = ( Base ` L ) ) |
| 50 | 48 49 | eqeq12d | |- ( ph -> ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) <-> ( ( LSpan ` L ) ` z ) = ( Base ` L ) ) ) |
| 51 | 50 | anbi1d | |- ( ph -> ( ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) <-> ( ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) |
| 52 | 47 51 | anbi12d | |- ( ph -> ( ( z C_ B /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) <-> ( z C_ ( Base ` L ) /\ ( ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) ) |
| 53 | 44 46 52 | 3bitr3d | |- ( ph -> ( ( z C_ ( Base ` K ) /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) <-> ( z C_ ( Base ` L ) /\ ( ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) ) |
| 54 | 3anass | |- ( ( z C_ ( Base ` K ) /\ ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) <-> ( z C_ ( Base ` K ) /\ ( ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) ) |
|
| 55 | 3anass | |- ( ( z C_ ( Base ` L ) /\ ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) <-> ( z C_ ( Base ` L ) /\ ( ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) |
|
| 56 | 53 54 55 | 3bitr4g | |- ( ph -> ( ( z C_ ( Base ` K ) /\ ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) <-> ( z C_ ( Base ` L ) /\ ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) |
| 57 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 58 | eqid | |- ( .s ` K ) = ( .s ` K ) |
|
| 59 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 60 | eqid | |- ( LBasis ` K ) = ( LBasis ` K ) |
|
| 61 | eqid | |- ( LSpan ` K ) = ( LSpan ` K ) |
|
| 62 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 63 | 57 7 58 59 60 61 62 | islbs | |- ( K e. X -> ( z e. ( LBasis ` K ) <-> ( z C_ ( Base ` K ) /\ ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) ) |
| 64 | 12 63 | syl | |- ( ph -> ( z e. ( LBasis ` K ) <-> ( z C_ ( Base ` K ) /\ ( ( LSpan ` K ) ` z ) = ( Base ` K ) /\ A. u e. z A. v e. ( ( Base ` F ) \ { ( 0g ` F ) } ) -. ( v ( .s ` K ) u ) e. ( ( LSpan ` K ) ` ( z \ { u } ) ) ) ) ) |
| 65 | eqid | |- ( Base ` L ) = ( Base ` L ) |
|
| 66 | eqid | |- ( .s ` L ) = ( .s ` L ) |
|
| 67 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 68 | eqid | |- ( LBasis ` L ) = ( LBasis ` L ) |
|
| 69 | eqid | |- ( LSpan ` L ) = ( LSpan ` L ) |
|
| 70 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 71 | 65 8 66 67 68 69 70 | islbs | |- ( L e. Y -> ( z e. ( LBasis ` L ) <-> ( z C_ ( Base ` L ) /\ ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) |
| 72 | 13 71 | syl | |- ( ph -> ( z e. ( LBasis ` L ) <-> ( z C_ ( Base ` L ) /\ ( ( LSpan ` L ) ` z ) = ( Base ` L ) /\ A. u e. z A. v e. ( ( Base ` G ) \ { ( 0g ` G ) } ) -. ( v ( .s ` L ) u ) e. ( ( LSpan ` L ) ` ( z \ { u } ) ) ) ) ) |
| 73 | 56 64 72 | 3bitr4d | |- ( ph -> ( z e. ( LBasis ` K ) <-> z e. ( LBasis ` L ) ) ) |
| 74 | 73 | eqrdv | |- ( ph -> ( LBasis ` K ) = ( LBasis ` L ) ) |