This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lbsss.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| lbssp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lbsind.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lbsind.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lbsind.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lbsind.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| Assertion | lbsind | ⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lbsss.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 3 | lbssp.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lbsind.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 5 | lbsind.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | lbsind.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 7 | lbsind.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 8 | eldifsn | ⊢ ( 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ↔ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) | |
| 9 | elfvdm | ⊢ ( 𝐵 ∈ ( LBasis ‘ 𝑊 ) → 𝑊 ∈ dom LBasis ) | |
| 10 | 9 2 | eleq2s | ⊢ ( 𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis ) |
| 11 | 1 4 5 6 2 3 7 | islbs | ⊢ ( 𝑊 ∈ dom LBasis → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 12 | 10 11 | syl | ⊢ ( 𝐵 ∈ 𝐽 → ( 𝐵 ∈ 𝐽 ↔ ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) ) |
| 13 | 12 | ibi | ⊢ ( 𝐵 ∈ 𝐽 → ( 𝐵 ⊆ 𝑉 ∧ ( 𝑁 ‘ 𝐵 ) = 𝑉 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) ) |
| 14 | 13 | simp3d | ⊢ ( 𝐵 ∈ 𝐽 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑥 = 𝐸 → ( 𝑦 · 𝑥 ) = ( 𝑦 · 𝐸 ) ) | |
| 16 | sneq | ⊢ ( 𝑥 = 𝐸 → { 𝑥 } = { 𝐸 } ) | |
| 17 | 16 | difeq2d | ⊢ ( 𝑥 = 𝐸 → ( 𝐵 ∖ { 𝑥 } ) = ( 𝐵 ∖ { 𝐸 } ) ) |
| 18 | 17 | fveq2d | ⊢ ( 𝑥 = 𝐸 → ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
| 19 | 15 18 | eleq12d | ⊢ ( 𝑥 = 𝐸 → ( ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
| 20 | 19 | notbid | ⊢ ( 𝑥 = 𝐸 → ( ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ↔ ¬ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 · 𝐸 ) = ( 𝐴 · 𝐸 ) ) | |
| 22 | 21 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ↔ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
| 23 | 22 | notbid | ⊢ ( 𝑦 = 𝐴 → ( ¬ ( 𝑦 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ↔ ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
| 24 | 20 23 | rspc2v | ⊢ ( ( 𝐸 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ ( 𝐾 ∖ { 0 } ) ¬ ( 𝑦 · 𝑥 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
| 25 | 14 24 | syl5com | ⊢ ( 𝐵 ∈ 𝐽 → ( ( 𝐸 ∈ 𝐵 ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) ) |
| 26 | 25 | impl | ⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ 𝐴 ∈ ( 𝐾 ∖ { 0 } ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |
| 27 | 8 26 | sylan2br | ⊢ ( ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) ) → ¬ ( 𝐴 · 𝐸 ) ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝐸 } ) ) ) |