This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017) (Proof shortened by Wolf Lammen, 13-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eqneltrrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| eqneltrrd.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐶 ) | ||
| Assertion | eqneltrrd | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqneltrrd.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | eqneltrrd.2 | ⊢ ( 𝜑 → ¬ 𝐴 ∈ 𝐶 ) | |
| 3 | 1 | eqcomd | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 4 | 3 2 | eqneltrd | ⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐶 ) |