This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No proper subset of a basis spans the space. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsind2.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| lbsind2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lbsind2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lbsind2.o | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| lbsind2.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| lbspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| Assertion | lbspss | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) → ( 𝑁 ‘ 𝐶 ) ≠ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsind2.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | lbsind2.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 3 | lbsind2.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lbsind2.o | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 5 | lbsind2.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 6 | lbspss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 7 | pssnel | ⊢ ( 𝐶 ⊊ 𝐵 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) | |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) |
| 9 | simpl2 | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝐵 ∈ 𝐽 ) | |
| 10 | 6 1 | lbsss | ⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉 ) |
| 11 | 9 10 | syl | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝐵 ⊆ 𝑉 ) |
| 12 | simprl | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝑥 ∈ 𝐵 ) | |
| 13 | 11 12 | sseldd | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝑥 ∈ 𝑉 ) |
| 14 | simpl1l | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝑊 ∈ LMod ) | |
| 15 | 11 | ssdifssd | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝐵 ∖ { 𝑥 } ) ⊆ 𝑉 ) |
| 16 | simpl3 | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝐶 ⊊ 𝐵 ) | |
| 17 | 16 | pssssd | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝐶 ⊆ 𝐵 ) |
| 18 | 17 | sseld | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐵 ) ) |
| 19 | simprr | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ¬ 𝑥 ∈ 𝐶 ) | |
| 20 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝐶 ↔ 𝑥 ∈ 𝐶 ) ) | |
| 21 | 20 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 𝑦 ∈ 𝐶 ↔ ¬ 𝑥 ∈ 𝐶 ) ) |
| 22 | 19 21 | syl5ibrcom | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑦 = 𝑥 → ¬ 𝑦 ∈ 𝐶 ) ) |
| 23 | 22 | necon2ad | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑦 ∈ 𝐶 → 𝑦 ≠ 𝑥 ) ) |
| 24 | 18 23 | jcad | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑦 ∈ 𝐶 → ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 𝑥 ) ) ) |
| 25 | eldifsn | ⊢ ( 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ≠ 𝑥 ) ) | |
| 26 | 24 25 | imbitrrdi | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑦 ∈ 𝐶 → 𝑦 ∈ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 27 | 26 | ssrdv | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝐶 ⊆ ( 𝐵 ∖ { 𝑥 } ) ) |
| 28 | 6 2 | lspss | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐵 ∖ { 𝑥 } ) ⊆ 𝑉 ∧ 𝐶 ⊆ ( 𝐵 ∖ { 𝑥 } ) ) → ( 𝑁 ‘ 𝐶 ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 29 | 14 15 27 28 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑁 ‘ 𝐶 ) ⊆ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 30 | simpl1r | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 1 ≠ 0 ) | |
| 31 | 1 2 3 4 5 | lbsind2 | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝑥 ∈ 𝐵 ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 32 | 14 30 9 12 31 | syl211anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝐵 ∖ { 𝑥 } ) ) ) |
| 33 | 29 32 | ssneldd | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ¬ 𝑥 ∈ ( 𝑁 ‘ 𝐶 ) ) |
| 34 | nelne1 | ⊢ ( ( 𝑥 ∈ 𝑉 ∧ ¬ 𝑥 ∈ ( 𝑁 ‘ 𝐶 ) ) → 𝑉 ≠ ( 𝑁 ‘ 𝐶 ) ) | |
| 35 | 13 33 34 | syl2anc | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → 𝑉 ≠ ( 𝑁 ‘ 𝐶 ) ) |
| 36 | 35 | necomd | ⊢ ( ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶 ) ) → ( 𝑁 ‘ 𝐶 ) ≠ 𝑉 ) |
| 37 | 8 36 | exlimddv | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) ∧ 𝐵 ∈ 𝐽 ∧ 𝐶 ⊊ 𝐵 ) → ( 𝑁 ‘ 𝐶 ) ≠ 𝑉 ) |