This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element of a basis is a vector. (Contributed by Mario Carneiro, 24-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lbsss.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| Assertion | lbsel | ⊢ ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lbsss.j | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 3 | 1 2 | lbsss | ⊢ ( 𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉 ) |
| 4 | 3 | sselda | ⊢ ( ( 𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵 ) → 𝐸 ∈ 𝑉 ) |