This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A basis is linearly independent; that is, every element is not in the span of the remainder of the basis. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 12-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsind2.j | |- J = ( LBasis ` W ) |
|
| lbsind2.n | |- N = ( LSpan ` W ) |
||
| lbsind2.f | |- F = ( Scalar ` W ) |
||
| lbsind2.o | |- .1. = ( 1r ` F ) |
||
| lbsind2.z | |- .0. = ( 0g ` F ) |
||
| Assertion | lbsind2 | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. E e. ( N ` ( B \ { E } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsind2.j | |- J = ( LBasis ` W ) |
|
| 2 | lbsind2.n | |- N = ( LSpan ` W ) |
|
| 3 | lbsind2.f | |- F = ( Scalar ` W ) |
|
| 4 | lbsind2.o | |- .1. = ( 1r ` F ) |
|
| 5 | lbsind2.z | |- .0. = ( 0g ` F ) |
|
| 6 | simp1l | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> W e. LMod ) |
|
| 7 | simp2 | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> B e. J ) |
|
| 8 | simp3 | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> E e. B ) |
|
| 9 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 10 | 9 1 | lbsel | |- ( ( B e. J /\ E e. B ) -> E e. ( Base ` W ) ) |
| 11 | 7 8 10 | syl2anc | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> E e. ( Base ` W ) ) |
| 12 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 13 | 9 3 12 4 | lmodvs1 | |- ( ( W e. LMod /\ E e. ( Base ` W ) ) -> ( .1. ( .s ` W ) E ) = E ) |
| 14 | 6 11 13 | syl2anc | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> ( .1. ( .s ` W ) E ) = E ) |
| 15 | 3 | lmodring | |- ( W e. LMod -> F e. Ring ) |
| 16 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 17 | 16 4 | ringidcl | |- ( F e. Ring -> .1. e. ( Base ` F ) ) |
| 18 | 6 15 17 | 3syl | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> .1. e. ( Base ` F ) ) |
| 19 | simp1r | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> .1. =/= .0. ) |
|
| 20 | 9 1 2 3 12 16 5 | lbsind | |- ( ( ( B e. J /\ E e. B ) /\ ( .1. e. ( Base ` F ) /\ .1. =/= .0. ) ) -> -. ( .1. ( .s ` W ) E ) e. ( N ` ( B \ { E } ) ) ) |
| 21 | 7 8 18 19 20 | syl22anc | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. ( .1. ( .s ` W ) E ) e. ( N ` ( B \ { E } ) ) ) |
| 22 | 14 21 | eqneltrrd | |- ( ( ( W e. LMod /\ .1. =/= .0. ) /\ B e. J /\ E e. B ) -> -. E e. ( N ` ( B \ { E } ) ) ) |