This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than" in a lattice. ( chnle analog.) (Contributed by NM, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latnle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latnle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latnle.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| latnle.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latnle | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < ( 𝑋 ∨ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latnle.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latnle.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latnle.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | latnle.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 5 | 1 2 4 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 6 | 5 | biantrurd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 7 | 1 2 4 | latleeqj1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ( 𝑌 ∨ 𝑋 ) = 𝑋 ) ) |
| 8 | 7 | 3com23 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ ( 𝑌 ∨ 𝑋 ) = 𝑋 ) ) |
| 9 | eqcom | ⊢ ( ( 𝑌 ∨ 𝑋 ) = 𝑋 ↔ 𝑋 = ( 𝑌 ∨ 𝑋 ) ) | |
| 10 | 8 9 | bitrdi | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ 𝑋 = ( 𝑌 ∨ 𝑋 ) ) ) |
| 11 | 1 4 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) = ( 𝑌 ∨ 𝑋 ) ) |
| 12 | 11 | eqeq2d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 = ( 𝑋 ∨ 𝑌 ) ↔ 𝑋 = ( 𝑌 ∨ 𝑋 ) ) ) |
| 13 | 10 12 | bitr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ≤ 𝑋 ↔ 𝑋 = ( 𝑋 ∨ 𝑌 ) ) ) |
| 14 | 13 | necon3bbid | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) |
| 15 | 1 4 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 16 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 17 | 15 16 | syld3an3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < ( 𝑋 ∨ 𝑌 ) ↔ ( 𝑋 ≤ ( 𝑋 ∨ 𝑌 ) ∧ 𝑋 ≠ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 18 | 6 14 17 | 3bitr4d | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ¬ 𝑌 ≤ 𝑋 ↔ 𝑋 < ( 𝑋 ∨ 𝑌 ) ) ) |