This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than or equal to" in terms of join. ( chlejb1 analog.) (Contributed by NM, 21-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latleeqj1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | 1 2 | latref | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 5 | 4 | 3adant2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ 𝑌 ) |
| 6 | 5 | biantrud | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) ) ) |
| 7 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Lat ) | |
| 8 | simp2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) | |
| 9 | simp3 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ∈ 𝐵 ) | |
| 10 | 1 2 3 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ) ) |
| 11 | 7 8 9 9 10 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑌 ) ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ) ) |
| 12 | 6 11 | bitrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ) ) |
| 13 | 1 2 3 | latlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) |
| 14 | 13 | biantrud | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ↔ ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 15 | 12 14 | bitrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ) ) |
| 16 | latpos | ⊢ ( 𝐾 ∈ Lat → 𝐾 ∈ Poset ) | |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ Poset ) |
| 18 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 19 | 1 2 | posasymb | ⊢ ( ( 𝐾 ∈ Poset ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |
| 20 | 17 18 9 19 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( ( 𝑋 ∨ 𝑌 ) ≤ 𝑌 ∧ 𝑌 ≤ ( 𝑋 ∨ 𝑌 ) ) ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |
| 21 | 15 20 | bitrd | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 ∨ 𝑌 ) = 𝑌 ) ) |