This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than" in a lattice. ( chnle analog.) (Contributed by NM, 16-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latnle.b | |- B = ( Base ` K ) |
|
| latnle.l | |- .<_ = ( le ` K ) |
||
| latnle.s | |- .< = ( lt ` K ) |
||
| latnle.j | |- .\/ = ( join ` K ) |
||
| Assertion | latnle | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. Y .<_ X <-> X .< ( X .\/ Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latnle.b | |- B = ( Base ` K ) |
|
| 2 | latnle.l | |- .<_ = ( le ` K ) |
|
| 3 | latnle.s | |- .< = ( lt ` K ) |
|
| 4 | latnle.j | |- .\/ = ( join ` K ) |
|
| 5 | 1 2 4 | latlej1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> X .<_ ( X .\/ Y ) ) |
| 6 | 5 | biantrurd | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X =/= ( X .\/ Y ) <-> ( X .<_ ( X .\/ Y ) /\ X =/= ( X .\/ Y ) ) ) ) |
| 7 | 1 2 4 | latleeqj1 | |- ( ( K e. Lat /\ Y e. B /\ X e. B ) -> ( Y .<_ X <-> ( Y .\/ X ) = X ) ) |
| 8 | 7 | 3com23 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( Y .<_ X <-> ( Y .\/ X ) = X ) ) |
| 9 | eqcom | |- ( ( Y .\/ X ) = X <-> X = ( Y .\/ X ) ) |
|
| 10 | 8 9 | bitrdi | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( Y .<_ X <-> X = ( Y .\/ X ) ) ) |
| 11 | 1 4 | latjcom | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 12 | 11 | eqeq2d | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X = ( X .\/ Y ) <-> X = ( Y .\/ X ) ) ) |
| 13 | 10 12 | bitr4d | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( Y .<_ X <-> X = ( X .\/ Y ) ) ) |
| 14 | 13 | necon3bbid | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. Y .<_ X <-> X =/= ( X .\/ Y ) ) ) |
| 15 | 1 4 | latjcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) e. B ) |
| 16 | 2 3 | pltval | |- ( ( K e. Lat /\ X e. B /\ ( X .\/ Y ) e. B ) -> ( X .< ( X .\/ Y ) <-> ( X .<_ ( X .\/ Y ) /\ X =/= ( X .\/ Y ) ) ) ) |
| 17 | 15 16 | syld3an3 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X .< ( X .\/ Y ) <-> ( X .<_ ( X .\/ Y ) /\ X =/= ( X .\/ Y ) ) ) ) |
| 18 | 6 14 17 | 3bitr4d | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( -. Y .<_ X <-> X .< ( X .\/ Y ) ) ) |