This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalent expressions for "not less than" in the Hilbert lattice. (Contributed by NM, 9-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chnle | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐵 ⊆ 𝐴 ↔ 𝐵 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) | |
| 2 | 1 | notbid | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ ¬ 𝐵 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) |
| 3 | id | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) | |
| 4 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) ) | |
| 5 | 3 4 | psseq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) ) ) |
| 6 | 2 5 | bibi12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ↔ ( ¬ 𝐵 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) ) ) ) |
| 7 | sseq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( 𝐵 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ↔ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) | |
| 8 | 7 | notbid | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ¬ 𝐵 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ↔ ¬ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ) ) |
| 9 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 10 | 9 | psseq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) ) |
| 11 | 8 10 | bibi12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( ¬ 𝐵 ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ 𝐵 ) ) ↔ ( ¬ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) ) ) |
| 12 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 13 | 12 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 14 | 12 | elimel | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∈ Cℋ |
| 15 | 13 14 | chnlei | ⊢ ( ¬ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ⊆ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ↔ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ⊊ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∨ℋ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) |
| 16 | 6 11 15 | dedth2h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ¬ 𝐵 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝐵 ) ) ) |