This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice is distributive in one ordering direction. ( ledi analog.) (Contributed by NM, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latledi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latledi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latledi.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latledi.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latledi | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latledi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latledi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latledi.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | latledi.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | 1 2 4 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 6 | 5 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 7 | 1 2 4 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ) |
| 8 | 7 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ) |
| 9 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 10 | 9 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 11 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ) |
| 12 | 11 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ) |
| 13 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 10 12 13 | 3jca | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 15 | 1 2 3 | latjle12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ) ↔ ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ 𝑋 ) ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑋 ) ↔ ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ 𝑋 ) ) |
| 17 | 6 8 16 | mpbi2and | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ 𝑋 ) |
| 18 | 1 2 4 | latmle2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 19 | 18 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ) |
| 20 | 1 2 4 | latmle2 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) |
| 21 | 20 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) |
| 22 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 23 | simpr2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 24 | simpr3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 25 | 1 2 3 | latjlej12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 26 | 22 10 23 12 24 25 | syl122anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∧ 𝑌 ) ≤ 𝑌 ∧ ( 𝑋 ∧ 𝑍 ) ≤ 𝑍 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 27 | 19 21 26 | mp2and | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑌 ∨ 𝑍 ) ) |
| 28 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑍 ) ∈ 𝐵 ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ∈ 𝐵 ) |
| 29 | 22 10 12 28 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ∈ 𝐵 ) |
| 30 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) |
| 31 | 30 | 3adant3r1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) |
| 32 | 1 2 4 | latlem12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) ) → ( ( ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ 𝑋 ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑌 ∨ 𝑍 ) ) ↔ ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) ) |
| 33 | 22 29 13 31 32 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ 𝑋 ∧ ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑌 ∨ 𝑍 ) ) ↔ ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) ) |
| 34 | 17 27 33 | mpbi2and | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 ∧ 𝑌 ) ∨ ( 𝑋 ∧ 𝑍 ) ) ≤ ( 𝑋 ∧ ( 𝑌 ∨ 𝑍 ) ) ) |