This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordering of a meet and join with a common variable. (Contributed by NM, 4-Oct-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latledi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latledi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latledi.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| latledi.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | latmlej11 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∨ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latledi.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latledi.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latledi.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | latledi.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 5 | simpl | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 6 | 1 4 | latmcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 7 | 6 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ∈ 𝐵 ) |
| 8 | simpr1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 9 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑍 ) ∈ 𝐵 ) |
| 10 | 9 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑍 ) ∈ 𝐵 ) |
| 11 | 1 2 4 | latmle1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 12 | 11 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ 𝑋 ) |
| 13 | 1 2 3 | latlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑍 ) ) |
| 14 | 13 | 3adant3r2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑍 ) ) |
| 15 | 1 2 5 7 8 10 12 14 | lattrd | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ∧ 𝑌 ) ≤ ( 𝑋 ∨ 𝑍 ) ) |