This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledi | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ) | |
| 2 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ 𝐶 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) | |
| 3 | 1 2 | oveq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) = ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) ) |
| 4 | ineq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) | |
| 5 | 3 4 | sseq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) → ( ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) ) |
| 6 | ineq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) = ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) ) |
| 8 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( 𝐵 ∨ℋ 𝐶 ) = ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ 𝐶 ) ) | |
| 9 | 8 | ineq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ 𝐶 ) ) ) |
| 10 | 7 9 | sseq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐵 ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ 𝐶 ) ) ) ) |
| 11 | ineq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) → ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) = ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) → ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ 𝐶 ) = ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) | |
| 14 | 13 | ineq2d | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) → ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ 𝐶 ) ) = ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) ) |
| 15 | 12 14 | sseq12d | ⊢ ( 𝐶 = if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) → ( ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ 𝐶 ) ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ 𝐶 ) ) ↔ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) ) ) |
| 16 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 17 | 16 | elimel | ⊢ if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∈ Cℋ |
| 18 | 16 | elimel | ⊢ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∈ Cℋ |
| 19 | 16 | elimel | ⊢ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ∈ Cℋ |
| 20 | 17 18 19 | ledii | ⊢ ( ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ) ∨ℋ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) ⊆ ( if ( 𝐴 ∈ Cℋ , 𝐴 , 0ℋ ) ∩ ( if ( 𝐵 ∈ Cℋ , 𝐵 , 0ℋ ) ∨ℋ if ( 𝐶 ∈ Cℋ , 𝐶 , 0ℋ ) ) ) |
| 21 | 5 10 15 20 | dedth3h | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) ) |