This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice is distributive in one ordering direction. ( ledi analog.) (Contributed by NM, 7-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latledi.b | |- B = ( Base ` K ) |
|
| latledi.l | |- .<_ = ( le ` K ) |
||
| latledi.j | |- .\/ = ( join ` K ) |
||
| latledi.m | |- ./\ = ( meet ` K ) |
||
| Assertion | latledi | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( X ./\ ( Y .\/ Z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latledi.b | |- B = ( Base ` K ) |
|
| 2 | latledi.l | |- .<_ = ( le ` K ) |
|
| 3 | latledi.j | |- .\/ = ( join ` K ) |
|
| 4 | latledi.m | |- ./\ = ( meet ` K ) |
|
| 5 | 1 2 4 | latmle1 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) .<_ X ) |
| 6 | 5 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ X ) |
| 7 | 1 2 4 | latmle1 | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) .<_ X ) |
| 8 | 7 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) .<_ X ) |
| 9 | 1 4 | latmcl | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) e. B ) |
| 10 | 9 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) e. B ) |
| 11 | 1 4 | latmcl | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) e. B ) |
| 12 | 11 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) e. B ) |
| 13 | simpr1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> X e. B ) |
|
| 14 | 10 12 13 | 3jca | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) e. B /\ ( X ./\ Z ) e. B /\ X e. B ) ) |
| 15 | 1 2 3 | latjle12 | |- ( ( K e. Lat /\ ( ( X ./\ Y ) e. B /\ ( X ./\ Z ) e. B /\ X e. B ) ) -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Z ) .<_ X ) <-> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ X ) ) |
| 16 | 14 15 | syldan | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X ./\ Y ) .<_ X /\ ( X ./\ Z ) .<_ X ) <-> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ X ) ) |
| 17 | 6 8 16 | mpbi2and | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ X ) |
| 18 | 1 2 4 | latmle2 | |- ( ( K e. Lat /\ X e. B /\ Y e. B ) -> ( X ./\ Y ) .<_ Y ) |
| 19 | 18 | 3adant3r3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Y ) .<_ Y ) |
| 20 | 1 2 4 | latmle2 | |- ( ( K e. Lat /\ X e. B /\ Z e. B ) -> ( X ./\ Z ) .<_ Z ) |
| 21 | 20 | 3adant3r2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X ./\ Z ) .<_ Z ) |
| 22 | simpl | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> K e. Lat ) |
|
| 23 | simpr2 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Y e. B ) |
|
| 24 | simpr3 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> Z e. B ) |
|
| 25 | 1 2 3 | latjlej12 | |- ( ( K e. Lat /\ ( ( X ./\ Y ) e. B /\ Y e. B ) /\ ( ( X ./\ Z ) e. B /\ Z e. B ) ) -> ( ( ( X ./\ Y ) .<_ Y /\ ( X ./\ Z ) .<_ Z ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( Y .\/ Z ) ) ) |
| 26 | 22 10 23 12 24 25 | syl122anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( X ./\ Y ) .<_ Y /\ ( X ./\ Z ) .<_ Z ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( Y .\/ Z ) ) ) |
| 27 | 19 21 26 | mp2and | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( Y .\/ Z ) ) |
| 28 | 1 3 | latjcl | |- ( ( K e. Lat /\ ( X ./\ Y ) e. B /\ ( X ./\ Z ) e. B ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) e. B ) |
| 29 | 22 10 12 28 | syl3anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) e. B ) |
| 30 | 1 3 | latjcl | |- ( ( K e. Lat /\ Y e. B /\ Z e. B ) -> ( Y .\/ Z ) e. B ) |
| 31 | 30 | 3adant3r1 | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( Y .\/ Z ) e. B ) |
| 32 | 1 2 4 | latlem12 | |- ( ( K e. Lat /\ ( ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) e. B /\ X e. B /\ ( Y .\/ Z ) e. B ) ) -> ( ( ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ X /\ ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( Y .\/ Z ) ) <-> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( X ./\ ( Y .\/ Z ) ) ) ) |
| 33 | 22 29 13 31 32 | syl13anc | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ X /\ ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( Y .\/ Z ) ) <-> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( X ./\ ( Y .\/ Z ) ) ) ) |
| 34 | 17 27 33 | mpbi2and | |- ( ( K e. Lat /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( ( X ./\ Y ) .\/ ( X ./\ Z ) ) .<_ ( X ./\ ( Y .\/ Z ) ) ) |