This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add join to both sides of a lattice ordering. ( chlej12i analog.) (Contributed by NM, 8-Nov-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| Assertion | latjlej12 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊 ) → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | latlej.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | latlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | latlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 4 | simp1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝐾 ∈ Lat ) | |
| 5 | simp2l | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 6 | simp2r | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 7 | simp3l | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 8 | 1 2 3 | latjlej1 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 9 | 4 5 6 7 8 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ) ) |
| 10 | simp3r | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → 𝑊 ∈ 𝐵 ) | |
| 11 | 1 2 3 | latjlej2 | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑍 ≤ 𝑊 → ( 𝑌 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) ) |
| 12 | 4 7 10 6 11 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑍 ≤ 𝑊 → ( 𝑌 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) ) |
| 13 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑍 ) ∈ 𝐵 ) |
| 14 | 4 5 7 13 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑋 ∨ 𝑍 ) ∈ 𝐵 ) |
| 15 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) |
| 16 | 4 6 7 15 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ) |
| 17 | 1 3 | latjcl | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑌 ∨ 𝑊 ) ∈ 𝐵 ) |
| 18 | 4 6 10 17 | syl3anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( 𝑌 ∨ 𝑊 ) ∈ 𝐵 ) |
| 19 | 1 2 | lattr | ⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∨ 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑍 ) ∈ 𝐵 ∧ ( 𝑌 ∨ 𝑊 ) ∈ 𝐵 ) ) → ( ( ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ∧ ( 𝑌 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) ) |
| 20 | 4 14 16 18 19 | syl13anc | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑍 ) ∧ ( 𝑌 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) ) |
| 21 | 9 12 20 | syl2and | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊 ) → ( 𝑋 ∨ 𝑍 ) ≤ ( 𝑌 ∨ 𝑊 ) ) ) |