This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lagsubg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| Assertion | lagsubg | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lagsubg.1 | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | simpr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑋 ∈ Fin ) | |
| 3 | pwfi | ⊢ ( 𝑋 ∈ Fin ↔ 𝒫 𝑋 ∈ Fin ) | |
| 4 | 2 3 | sylib | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝒫 𝑋 ∈ Fin ) |
| 5 | eqid | ⊢ ( 𝐺 ~QG 𝑌 ) = ( 𝐺 ~QG 𝑌 ) | |
| 6 | 1 5 | eqger | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝐺 ~QG 𝑌 ) Er 𝑋 ) |
| 8 | 7 | qsss | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ⊆ 𝒫 𝑋 ) |
| 9 | 4 8 | ssfid | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∈ Fin ) |
| 10 | hashcl | ⊢ ( ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ∈ Fin → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℕ0 ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℕ0 ) |
| 12 | 11 | nn0zd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℤ ) |
| 13 | id | ⊢ ( 𝑋 ∈ Fin → 𝑋 ∈ Fin ) | |
| 14 | 1 | subgss | ⊢ ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) → 𝑌 ⊆ 𝑋 ) |
| 15 | ssfi | ⊢ ( ( 𝑋 ∈ Fin ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ∈ Fin ) | |
| 16 | 13 14 15 | syl2anr | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑌 ∈ Fin ) |
| 17 | hashcl | ⊢ ( 𝑌 ∈ Fin → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∈ ℕ0 ) |
| 19 | 18 | nn0zd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∈ ℤ ) |
| 20 | dvdsmul2 | ⊢ ( ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑌 ) ∈ ℤ ) → ( ♯ ‘ 𝑌 ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) | |
| 21 | 12 19 20 | syl2anc | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
| 22 | simpl | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 23 | 1 5 22 2 | lagsubg2 | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑋 ) = ( ( ♯ ‘ ( 𝑋 / ( 𝐺 ~QG 𝑌 ) ) ) · ( ♯ ‘ 𝑌 ) ) ) |
| 24 | 21 23 | breqtrrd | ⊢ ( ( 𝑌 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑌 ) ∥ ( ♯ ‘ 𝑋 ) ) |