This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lagrange's theorem for Groups: the order of any subgroup of a finite group is a divisor of the order of the group. This is Metamath 100 proof #71. (Contributed by Mario Carneiro, 11-Jul-2014) (Revised by Mario Carneiro, 12-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lagsubg.1 | |- X = ( Base ` G ) |
|
| Assertion | lagsubg | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` Y ) || ( # ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lagsubg.1 | |- X = ( Base ` G ) |
|
| 2 | simpr | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> X e. Fin ) |
|
| 3 | pwfi | |- ( X e. Fin <-> ~P X e. Fin ) |
|
| 4 | 2 3 | sylib | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ~P X e. Fin ) |
| 5 | eqid | |- ( G ~QG Y ) = ( G ~QG Y ) |
|
| 6 | 1 5 | eqger | |- ( Y e. ( SubGrp ` G ) -> ( G ~QG Y ) Er X ) |
| 7 | 6 | adantr | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( G ~QG Y ) Er X ) |
| 8 | 7 | qsss | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( X /. ( G ~QG Y ) ) C_ ~P X ) |
| 9 | 4 8 | ssfid | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( X /. ( G ~QG Y ) ) e. Fin ) |
| 10 | hashcl | |- ( ( X /. ( G ~QG Y ) ) e. Fin -> ( # ` ( X /. ( G ~QG Y ) ) ) e. NN0 ) |
|
| 11 | 9 10 | syl | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` ( X /. ( G ~QG Y ) ) ) e. NN0 ) |
| 12 | 11 | nn0zd | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` ( X /. ( G ~QG Y ) ) ) e. ZZ ) |
| 13 | id | |- ( X e. Fin -> X e. Fin ) |
|
| 14 | 1 | subgss | |- ( Y e. ( SubGrp ` G ) -> Y C_ X ) |
| 15 | ssfi | |- ( ( X e. Fin /\ Y C_ X ) -> Y e. Fin ) |
|
| 16 | 13 14 15 | syl2anr | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> Y e. Fin ) |
| 17 | hashcl | |- ( Y e. Fin -> ( # ` Y ) e. NN0 ) |
|
| 18 | 16 17 | syl | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` Y ) e. NN0 ) |
| 19 | 18 | nn0zd | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` Y ) e. ZZ ) |
| 20 | dvdsmul2 | |- ( ( ( # ` ( X /. ( G ~QG Y ) ) ) e. ZZ /\ ( # ` Y ) e. ZZ ) -> ( # ` Y ) || ( ( # ` ( X /. ( G ~QG Y ) ) ) x. ( # ` Y ) ) ) |
|
| 21 | 12 19 20 | syl2anc | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` Y ) || ( ( # ` ( X /. ( G ~QG Y ) ) ) x. ( # ` Y ) ) ) |
| 22 | simpl | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> Y e. ( SubGrp ` G ) ) |
|
| 23 | 1 5 22 2 | lagsubg2 | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` X ) = ( ( # ` ( X /. ( G ~QG Y ) ) ) x. ( # ` Y ) ) ) |
| 24 | 21 23 | breqtrrd | |- ( ( Y e. ( SubGrp ` G ) /\ X e. Fin ) -> ( # ` Y ) || ( # ` X ) ) |