This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for kqt0 . (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| Assertion | kqt0lem | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | kqval.2 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ { 𝑦 ∈ 𝐽 ∣ 𝑥 ∈ 𝑦 } ) | |
| 2 | 1 | kqopn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 3 | 2 | adantlr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) ) |
| 4 | eleq2 | ⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) | |
| 5 | eleq2 | ⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) | |
| 6 | 4 5 | bibi12d | ⊢ ( 𝑧 = ( 𝐹 “ 𝑤 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
| 7 | 6 | rspcv | ⊢ ( ( 𝐹 “ 𝑤 ) ∈ ( KQ ‘ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
| 8 | 3 7 | syl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
| 9 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 10 | 9 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ 𝑎 ∈ 𝑋 ) → ( 𝑎 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 11 | 10 | adantrr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑎 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 12 | 1 | kqfvima | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ∧ 𝑏 ∈ 𝑋 ) → ( 𝑏 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 13 | 12 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ 𝑏 ∈ 𝑋 ) → ( 𝑏 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 14 | 13 | adantrl | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( 𝑏 ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) |
| 15 | 11 14 | bibi12d | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑤 ∈ 𝐽 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
| 16 | 15 | an32s | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ ( 𝐹 “ 𝑤 ) ↔ ( 𝐹 ‘ 𝑏 ) ∈ ( 𝐹 “ 𝑤 ) ) ) ) |
| 17 | 8 16 | sylibrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) ∧ 𝑤 ∈ 𝐽 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
| 18 | 17 | ralrimdva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ∀ 𝑤 ∈ 𝐽 ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
| 19 | 1 | kqfeq | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ) ) |
| 20 | 19 | 3expb | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ) ) |
| 21 | elequ2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ 𝑤 ) ) | |
| 22 | elequ2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ 𝑤 ) ) | |
| 23 | 21 22 | bibi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ↔ ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
| 24 | 23 | cbvralvw | ⊢ ( ∀ 𝑦 ∈ 𝐽 ( 𝑎 ∈ 𝑦 ↔ 𝑏 ∈ 𝑦 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) |
| 25 | 20 24 | bitrdi | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ↔ ∀ 𝑤 ∈ 𝐽 ( 𝑎 ∈ 𝑤 ↔ 𝑏 ∈ 𝑤 ) ) ) |
| 26 | 18 25 | sylibrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝑎 ∈ 𝑋 ∧ 𝑏 ∈ 𝑋 ) ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 27 | 26 | ralrimivva | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) |
| 28 | 1 | kqffn | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 29 | eleq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( 𝑢 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ) ) | |
| 30 | 29 | bibi1d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) ) |
| 31 | 30 | ralbidv | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ) ) |
| 32 | eqeq1 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( 𝑢 = 𝑣 ↔ ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) | |
| 33 | 31 32 | imbi12d | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) ) |
| 34 | 33 | ralbidv | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑎 ) → ( ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) ) |
| 35 | 34 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ) ) |
| 36 | eleq1 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( 𝑣 ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ) | |
| 37 | 36 | bibi2d | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ) ) |
| 38 | 37 | ralbidv | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) ↔ ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) ) ) |
| 39 | eqeq2 | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ( 𝐹 ‘ 𝑎 ) = 𝑣 ↔ ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) | |
| 40 | 38 39 | imbi12d | ⊢ ( 𝑣 = ( 𝐹 ‘ 𝑏 ) → ( ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ↔ ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 41 | 40 | ralrn | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ↔ ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 42 | 41 | ralbidv | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 43 | 35 42 | bitrd | ⊢ ( 𝐹 Fn 𝑋 → ( ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 44 | 28 43 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ↔ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( ( 𝐹 ‘ 𝑎 ) ∈ 𝑧 ↔ ( 𝐹 ‘ 𝑏 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) ) ) |
| 45 | 27 44 | mpbird | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ) |
| 46 | 1 | kqtopon | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) ) |
| 47 | ist0-2 | ⊢ ( ( KQ ‘ 𝐽 ) ∈ ( TopOn ‘ ran 𝐹 ) → ( ( KQ ‘ 𝐽 ) ∈ Kol2 ↔ ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ) ) | |
| 48 | 46 47 | syl | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( ( KQ ‘ 𝐽 ) ∈ Kol2 ↔ ∀ 𝑢 ∈ ran 𝐹 ∀ 𝑣 ∈ ran 𝐹 ( ∀ 𝑧 ∈ ( KQ ‘ 𝐽 ) ( 𝑢 ∈ 𝑧 ↔ 𝑣 ∈ 𝑧 ) → 𝑢 = 𝑣 ) ) ) |
| 49 | 45 48 | mpbird | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → ( KQ ‘ 𝐽 ) ∈ Kol2 ) |