This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem4 | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ1 | ⊢ ( 𝑣 = 𝑤 → ( 𝑣 ∈ 𝑥 ↔ 𝑤 ∈ 𝑥 ) ) | |
| 2 | neeq2 | ⊢ ( 𝑣 = 𝑤 → ( 𝑧 ≠ 𝑣 ↔ 𝑧 ≠ 𝑤 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑣 = 𝑤 → ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) ↔ ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) ) ) |
| 4 | elequ2 | ⊢ ( 𝑣 = 𝑤 → ( 𝑦 ∈ 𝑣 ↔ 𝑦 ∈ 𝑤 ) ) | |
| 5 | 4 | notbid | ⊢ ( 𝑣 = 𝑤 → ( ¬ 𝑦 ∈ 𝑣 ↔ ¬ 𝑦 ∈ 𝑤 ) ) |
| 6 | 3 5 | imbi12d | ⊢ ( 𝑣 = 𝑤 → ( ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ↔ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ¬ 𝑦 ∈ 𝑤 ) ) ) |
| 7 | 6 | spvv | ⊢ ( ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) → ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ¬ 𝑦 ∈ 𝑤 ) ) |
| 8 | eldif | ⊢ ( 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑦 ∈ 𝑧 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ) | |
| 9 | simpr | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) | |
| 10 | eluni | ⊢ ( 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ∃ 𝑣 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) | |
| 11 | 10 | notbii | ⊢ ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ¬ ∃ 𝑣 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) |
| 12 | alnex | ⊢ ( ∀ 𝑣 ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ¬ ∃ 𝑣 ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) | |
| 13 | con2b | ⊢ ( ( 𝑦 ∈ 𝑣 → ¬ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑣 ) ) | |
| 14 | imnan | ⊢ ( ( 𝑦 ∈ 𝑣 → ¬ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ) | |
| 15 | eldifsn | ⊢ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑣 ≠ 𝑧 ) ) | |
| 16 | necom | ⊢ ( 𝑣 ≠ 𝑧 ↔ 𝑧 ≠ 𝑣 ) | |
| 17 | 16 | anbi2i | ⊢ ( ( 𝑣 ∈ 𝑥 ∧ 𝑣 ≠ 𝑧 ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) ) |
| 18 | 15 17 | bitri | ⊢ ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ↔ ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) ) |
| 19 | 18 | imbi1i | ⊢ ( ( 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) → ¬ 𝑦 ∈ 𝑣 ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
| 20 | 13 14 19 | 3bitr3i | ⊢ ( ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
| 21 | 20 | albii | ⊢ ( ∀ 𝑣 ¬ ( 𝑦 ∈ 𝑣 ∧ 𝑣 ∈ ( 𝑥 ∖ { 𝑧 } ) ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
| 22 | 11 12 21 | 3bitr2i | ⊢ ( ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ↔ ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
| 23 | 9 22 | sylib | ⊢ ( ( 𝑦 ∈ 𝑧 ∧ ¬ 𝑦 ∈ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
| 24 | 8 23 | sylbi | ⊢ ( 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ∀ 𝑣 ( ( 𝑣 ∈ 𝑥 ∧ 𝑧 ≠ 𝑣 ) → ¬ 𝑦 ∈ 𝑣 ) ) |
| 25 | 7 24 | syl11 | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) → ¬ 𝑦 ∈ 𝑤 ) ) |
| 26 | 25 | ralrimiv | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ∀ 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ¬ 𝑦 ∈ 𝑤 ) |
| 27 | disj | ⊢ ( ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ↔ ∀ 𝑦 ∈ ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ¬ 𝑦 ∈ 𝑤 ) | |
| 28 | 26 27 | sylibr | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ 𝑧 ≠ 𝑤 ) → ( ( 𝑧 ∖ ∪ ( 𝑥 ∖ { 𝑧 } ) ) ∩ 𝑤 ) = ∅ ) |